8.已知sinα=$\frac{4}{5}$,$\frac{π}{2}$<α<π,則sin2α=-$\frac{24}{25}$.

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求cosα,進(jìn)而利用二倍角的正弦函數(shù)公式即可計(jì)算得解.

解答 解:∵sinα=$\frac{4}{5}$,$\frac{π}{2}$<α<π,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{3}{5}$,
∴sin2α=2sinαcosα=-$\frac{24}{25}$.
故答案為:-$\frac{24}{25}$.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥0}\\{x-y+3≥0}\\{0≤x≤3}\end{array}\right.$則z=3x-y的最小值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.?dāng)?shù)列{an}滿足an+1-an=an-an-1(n≥2,n∈N),a3=11,Sn為其前n項(xiàng)和,則S5=( 。
A.45B.50C.55D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.不共線向量$\overrightarrow a$,$\overrightarrow b$滿足$|{\overrightarrow a}|=|{\overrightarrow b}|$,且$\overrightarrow a⊥({\overrightarrow a-2\overrightarrow b})$,則$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),過(guò)雙曲線右焦點(diǎn)F傾斜角為$\frac{π}{4}$的直線與該雙曲線的漸近線分別交于M、N.若|FM|=2|FN|,則該雙曲線的離心率等于( 。
A.$\frac{\sqrt{10}}{3}$B.$\sqrt{3}$C.$\sqrt{3}$或$\frac{\sqrt{10}}{3}$D.$\frac{\sqrt{10}}{3}$或$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=ex-ax2-2x(a∈R).
(1)當(dāng)a=0時(shí),求f(x)的最小值;
(2)當(dāng)a<$\frac{e}{2}$-1時(shí),證明:不等式f(x)>$\frac{e}{2}$-1在(0,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.等比數(shù)列{an}中,a1=1,前n項(xiàng)和為Sn,滿足S7-4S6+3S5=0,則S4=40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)等比數(shù)列{an}的公比為q,前n項(xiàng)和為Sn,則“q=1”是“S6=3S2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=lnx-a$\frac{x-1}{x+1}$,a∈R.
(Ⅰ)討論f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x≠1時(shí),$\frac{{({x+1})lnx+2a}}{{{{({x+1})}^2}}}<\frac{lnx}{x-1}$恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案