14.過點M(1,1)的直線與雙曲線$\frac{x^2}{4}-\frac{y^2}{3}=1$交于A,B兩點,且點M平分AB,則直線AB的方程為( 。
A.4x+3y-7=0B.3x+4y+1=0C.3x-4y-7=0D.4y-3x-1=0

分析 利用點差法及中點坐標公式,求得得直線AB的斜率,根據(jù)直線的點斜式方程即可求得直線AB的方程.

解答 解:設(shè)A(x1,y1),B(x2,y2),
代入橢圓的方程可得:$\frac{{x}_{1}^{2}}{4}-\frac{{y}_{1}^{2}}{3}=1$,$\frac{{x}_{2}^{2}}{4}-\frac{{y}_{2}^{2}}{3}=1$,
兩式相減可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{4}$=$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{3}$,
由中點坐標公式可知:x1+x2=2,y1+y2=2,
由直線k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{3}{4}$,
則直線AB的方程為:y-1=$\frac{3}{4}$(x-1),化為4y-3x-1=0.
故選:D.

點評 本題考查直線方程的求法,考查點差法的應(yīng)用,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在正方體ABCD-A1B1C1D1中,E、F分別是AA1、CC1的中點,AC∩BD=O,連接A1D,A1B,DF,BF,求證:BD⊥A1F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),x∈R的部分圖象,則下列命題中,正確的命題序號是( 。
①函數(shù)f(x)的最小正周期為$\frac{π}{2}$
②函數(shù)f(x)的振幅為$2\sqrt{3}$
③函數(shù)f(x)的一條對稱軸方程為$x=\frac{7π}{12}$
④函數(shù)f(x)的單調(diào)遞增區(qū)間是$[{\frac{π}{12},\frac{7π}{12}}]$
⑤函數(shù)f(x)的解析式為$f(x)=\sqrt{3}sin({2x-\frac{2π}{3}})$.
A.③⑤B.③④C.④⑤D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在直角坐標系xoy中,曲線C1上的點均在圓C2:(x-5)2+y2=9外,且對C1上任意一點M,M到直線x=-2的距離等于該點與圓C2上點的距離的最小值,則曲線C1的方程為y2=20x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.?dāng)?shù)列{an},{bn}為等差數(shù)列,前n項和分別為Sn,Tn,若$\frac{S_n}{T_n}=\frac{3n+2}{2n}$,則$\frac{a_7}{b_7}$=( 。
A.$\frac{41}{26}$B.$\frac{23}{14}$C.$\frac{11}{7}$D.$\frac{11}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=ax3-bx+4(a,b∈R),當(dāng)x=2時,函數(shù)f(x)有極值$-\frac{4}{3}$.
(1)求函數(shù)f(x)的解析式;
(2)若方程f(x)=k有3個不同的根,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.給出下列四個命題:
①命題“?x∈(0,2),2x>x2”的否定是“?x∈(0,2),2x≤x2”;
②若直線l上有無數(shù)個點不在平面α內(nèi),則l∥α;
③若隨機變量ξ:N(1,σ2)且P(ξ<2)=0.7,則P(0<ξ<1)=0.3;
④等差數(shù)列{an}的前n項和為Sn,若a6=3,則S11=33.
其中真命題的序號是①④(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.過點(1,0)作傾斜角為$\frac{3π}{4}$的直線與y2=4x交于A、B,則AB的弦長為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N=n(modm),例如11=4(mod7),如圖所示的程序框圖的算法源于我國古代聞名中外的《中國剩余定理》,執(zhí)行該程序框圖,則輸出的n=( 。
A.14B.15C.16D.17

查看答案和解析>>

同步練習(xí)冊答案