4.已知向量$\overrightarrow{a}$=$(\frac{1}{2},\;\frac{{\sqrt{3}}}{2})$,$\overrightarrow$=$(-\frac{{\sqrt{3}}}{2},\;\frac{1}{2})$,則($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{a}$=( 。
A.-1B.0C.1D.2

分析 先計算${\overrightarrow{a}}^{2}$和$\overrightarrow{a}•\overrightarrow$,再利用數(shù)量積的運(yùn)算律計算.

解答 解:∵${\overrightarrow{a}}^{2}$=($\frac{1}{2}$)2+($\frac{\sqrt{3}}{2}$)2=1,$\overrightarrow{a}•\overrightarrow$=$\frac{1}{2}×(-\frac{\sqrt{3}}{2})$+$\frac{\sqrt{3}}{2}×\frac{1}{2}$=0,
∴($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{a}$=${\overrightarrow{a}}^{2}$+$\overrightarrow{a}•\overrightarrow$=1+0=1,
故選C.

點評 本題考查了平面向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在高中學(xué)習(xí)過程中,同學(xué)們經(jīng)常這樣說:“數(shù)學(xué)物理不分家,如果物理成績好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問題.”某班針對“高中生物理學(xué)習(xí)對數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了蘇俄生的物理成績與數(shù)學(xué)成績具有線性相關(guān)關(guān)系的結(jié)論.現(xiàn)從該班隨機(jī)抽取5名學(xué)生在一次考試中的數(shù)學(xué)和物理成績,如表:
成績   編號12345
物理(x)9085746863
數(shù)學(xué)(y)1301251109590
(1)求數(shù)學(xué)成績y對物理成績x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$($\widehat$精確到0.1).若某位學(xué)生的物理成績?yōu)?0分,預(yù)測他的數(shù)學(xué)成績;
(2)要從抽取的這五位學(xué)生中隨機(jī)選出2位參加一項知識競賽,求選中的學(xué)生的數(shù)學(xué)成績至少有一位高于120分的概率.(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)
(參考數(shù)據(jù):902+852+742+682+632=29394,90××125+74×110+68×95+63×90=42595)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知復(fù)數(shù)z(1+4i)=2i-5(i為虛數(shù)單位),則復(fù)數(shù)z的虛部為( 。
A.-$\frac{22}{17}$B.$\frac{22}{17}$iC.$\frac{22}{17}$D.$\frac{3}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{2x-xlnx(x>0)}\\{-{x^2}-\frac{3}{2}x(x≤0)}\end{array}}\right.$有且僅有四個不同的點關(guān)于直線y=1的對稱點在直線kx+y-1=0上,則實數(shù)k的取值范圍為( 。
A.$(\frac{1}{2},1)$B.$(\frac{1}{2},\frac{3}{4})$C.$(\frac{1}{3},1)$D.$(\frac{1}{2},2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若等邊△ABC的邊長為3,平面內(nèi)一點M滿足$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{CB}$+$\frac{1}{2}$$\overrightarrow{CA}$,則$\overrightarrow{AM}$•$\overrightarrow{BM}$的值為( 。
A.-$\frac{15}{2}$B.-2C.$\frac{15}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某優(yōu)秀學(xué)習(xí)小組有6名同學(xué),坐成三排兩列,現(xiàn)從中隨機(jī)抽2人代表本小組展示小組合作學(xué)習(xí)成果,則所抽的2人來自同一排的概率是$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=|x-1|,關(guān)于x的不等式f(x)<3-|2x+1|的解集記為A.
(Ⅰ)求A;
(Ⅱ)已知a,b∈A,求證:f(ab)>f(a)-f(b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.“sinα+cosα=0”是“cos2α=0”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分且必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在平面直角坐標(biāo)系下,曲線C1:$\left\{\begin{array}{l}{x=2t+2a}\\{y=-t}\end{array}\right.$(t為參數(shù)),曲線C2:$\left\{\begin{array}{l}{x=2sinθ}\\{y=1+2cosθ}\end{array}\right.$(θ為參數(shù)),若曲線C1,C2有公共點,則實數(shù)a的取值范圍是1-$\sqrt{5}$≤a≤1+$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊答案