12.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{22}{3}$B.$\frac{20}{3}$C.$\frac{16}{3}$D.6

分析 由已知中的三視圖可得:該幾何體是一個(gè)正方體切去一個(gè)三棱錐所得的組合體,進(jìn)而得到答案.

解答 解:由已知中的三視圖可得:該幾何體是一個(gè)正方體切去一個(gè)三棱錐所得的組合體,
正方體的體積為:8,
三棱錐的體積為:$\frac{1}{3}$×$\frac{1}{2}$×2×2×1=$\frac{2}{3}$,
故組合體的體積V=8-$\frac{2}{3}$=$\frac{22}{3}$,
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是棱錐的體積與表面積,棱柱的體積與表面積,簡(jiǎn)單幾何體的三視圖,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知a>0,函數(shù)f(x)=lnx-ax2
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)$a=\frac{1}{8}$時(shí),證明:存在x0∈(2,+∞),使$f({x_0})=f({\frac{3}{2}})$;
(3)若存在屬于區(qū)間[1,3]的α,β,且β-α≥1,使f(α)=f(β),證明:$\frac{ln3-ln2}{5}≤a≤\frac{ln2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.現(xiàn)有正整數(shù)構(gòu)成的數(shù)表如下:
第一行:1
第二行:12
第三行:1123
第四行:11211234
第五行:1121123112112345

第k行:先抄寫(xiě)第1行,接著按原序抄寫(xiě)第2行,然后按原序抄寫(xiě)第3行,…,直至按原序抄寫(xiě)第k-1行,最后添上數(shù)k.(如第四行,先抄寫(xiě)第一行的數(shù)1,接著按原序抄寫(xiě)第二行的數(shù)1,2,接著按原序抄寫(xiě)第三行的數(shù)1,1,2,3,最后添上數(shù)4).
將按照上述方式寫(xiě)下的第n個(gè)數(shù)記作an(如a1=1,a2=1,a3=2,a4=1,…,a7=3,…,a14=3,a15=4,…)
(1)用tk表示數(shù)表第k行的數(shù)的個(gè)數(shù),求數(shù)列{tk}的前k項(xiàng)和Tk;
(2)第8行中的數(shù)是否超過(guò)73個(gè)?若是,用${a_{n_0}}$表示第8行中的第73個(gè)數(shù),試求n0和${a_{n_0}}$的值;若不是,請(qǐng)說(shuō)明理由;
(3)令Sn=a1+a2+a3+…+an,求S2017的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,向量$\overrightarrow m=({a,b+\frac{1}{2}c})$;$\overrightarrow n=({cosC,-1})$,若$\overrightarrow m⊥\overrightarrow n$
(I)求角A的大小
(II)若a=1,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.要得到函數(shù)$y=cos(\frac{x}{2}-\frac{π}{3})$的圖象,只需將函數(shù)$y=cos\frac{x}{2}$的圖象( 。
A.向左平移$\frac{π}{3}$個(gè)單位B.向右平移$\frac{π}{3}$個(gè)單位
C.向左平移$\frac{2π}{3}$個(gè)單位D.向右平移$\frac{2π}{3}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如表,
x-104
f(x)122
f(x)的導(dǎo)函數(shù)y=f′(x)的圖象(該圖象關(guān)于(2,0)中心對(duì)稱) 如圖所示.
下列關(guān)于f(x)的命題:
①函數(shù)f(x)的極大值點(diǎn)為 0與4;
②函數(shù)f(x)在[0,2]上是減函數(shù);
③函數(shù)y=f(x)-a零點(diǎn)的個(gè)數(shù)可能為0、1、2、3、4個(gè);
④如果當(dāng)時(shí)x∈[-1,t],f(x)的最大值是2,那么t的最大值為5;.
⑤函數(shù)f(x)的圖象在[2,4]是上凸的
其中一定正確命題的序號(hào)是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.一個(gè)幾何體的三視圖如圖所示,該幾何體的體積為( 。
A.24-πB.24-3πC.$8-\frac{4π}{3}$D.$8-\frac{8π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在△ABC中,$a=2,b=4,C={30°},則\overrightarrow{BC}•\overrightarrow{CA}$=( 。
A.$4\sqrt{3}$B.4C.-4$\sqrt{3}$D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.給出如下“三段論”的推理過(guò)程:
因?yàn)閷?duì)數(shù)函數(shù)y=logax(a>0且a≠1)是增函數(shù),…大前提
而y=${log}_{\frac{1}{2}}x$是對(duì)數(shù)函數(shù),…小前提
所以y=${log}_{\frac{1}{2}}x$是增函數(shù),…結(jié)論
則下列說(shuō)法正確的是( 。
A.推理形式錯(cuò)誤B.大前提錯(cuò)誤
C.小前提錯(cuò)誤D.大前提和小前提都錯(cuò)誤

查看答案和解析>>

同步練習(xí)冊(cè)答案