1.在△ABC中,$a=2,b=4,C={30°},則\overrightarrow{BC}•\overrightarrow{CA}$=( 。
A.$4\sqrt{3}$B.4C.-4$\sqrt{3}$D.-4

分析 直接利用向量的數(shù)量積的公式求解即可.

解答 解:在△ABC中,$a=2,b=4,C={30°},則\overrightarrow{BC}•\overrightarrow{CA}$=a•bcos30°=2×$4×\frac{\sqrt{3}}{2}$=4$\sqrt{3}$.
故選:A.

點評 本題考查向量的數(shù)量積的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.兩條平行線l1:3x+4y=2與l2:ax+4y=7的距離為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{22}{3}$B.$\frac{20}{3}$C.$\frac{16}{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.袋子A和B中裝有若干個均勻的紅球和白球,從A中摸出一個紅球的概率是$\frac{1}{3}$,從B中摸出一個紅球的概率為p.
(1)從A中又放回的摸球,每次摸出一個,共摸5次
①恰好有3次摸到紅球的概率;②第一次、第三次、第五次摸到紅球的概率.
(2)若A、B兩個袋子中的球之比為12,將A、B中的球裝在一起后,從中摸出一個紅球的概率是$\frac{2}{5}$,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.觀察數(shù)表(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),(43),…,則第100個括號內(nèi)各數(shù)之和為( 。
A.1479B.1992C.2000D.2072

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=(x3+2x2+ax-a)ex,f′(x)為f(x)的導(dǎo)函數(shù),則f′(0)的值為( 。
A.0B.1C.-aD.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.給出下列不等式:①x≥ln(x+1)(x>-1)②$\sqrt{x}$>-$\frac{{x}^{2}}{2}$+2x-$\frac{1}{2}$(x>0)③ln$\frac{1+x}{1-x}$>2(x+$\frac{{x}^{3}}{3}$)(x∈(0,1))其中成立的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某小學(xué)為了解本校某年級女生的身高情況,從本校該年級的學(xué)生中隨機選出100名女生并統(tǒng)計她們的身高(單位:cm),得到如圖頻率分布表:
分組(身高)[125,130)[130,135)[135,140)[140,145]
(Ⅰ)用分層抽樣的方法從身高在[125,130)和[140,145]的女生中共抽取6人,則身高在[125,130)的女生應(yīng)抽取幾人?
(Ⅱ)在(Ⅰ)中抽取的6人中,再隨機抽取2人,求這2人身高都在[125,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線與拋物線$y=\frac{1}{2}{x^2}+\frac{1}{2}$只有一個公共點,則雙曲線的離心率為(  )
A.$\sqrt{2}$B.5C.2D.$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案