5.$\underset{lim}{n→∞}$($\frac{2n+1}{2n-1}$)3n=e3

分析 利用$\underset{lim}{n→∞}$${(1+\frac{1}{n})}^{n}$=e,湊出所求極限的值.

解答 解:$\underset{lim}{n→∞}$($\frac{2n+1}{2n-1}$)3n=$\underset{lim}{n→∞}$${(\frac{2n-1+2}{2n-1})}^{3n}$
=$\underset{lim}{n→∞}$${(1+\frac{2}{2n-1})}^{3n}$
=$\underset{lim}{n→∞}$[${(1+\frac{1}{n-\frac{1}{2}})}^{3(n-\frac{1}{2})}$•${(1+\frac{1}{n-\frac{1}{2}})}^{\frac{3}{2}}$]
=e3•1
=e3
故答案為:e3

點評 本題考查了極限的計算問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{{x}^{2}}{ax+b}$,(a、b為常數(shù)),且函數(shù)g(x)=f(x)-x+12有兩個零點x1=3,x2=4.
(I)求函數(shù)f(x)的解析式;
(II)若k≥2,解關于x 的不等式f(x)<$\frac{(k+1)x-k}{2-x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(1)若關于x的不等式|x-3|+|x+2|≤|2a+1|的解集不是空集,試求a的取值范圍;
(2)已知關于x的不等式|x-a|≤4的解集為[-1,7],且兩正數(shù)s和t滿足2s+t=a,求證:$\frac{1}{s}+\frac{8}{t}≥6$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.將3個不同的小球放入4個盒子中,有64種不同的放法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知等差數(shù)列{an}滿足a5=3,a7=-3,則數(shù)列{|an|}的前10項和為( 。
A.15B.75C.45D.60

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=ax-e(x+1)lna-$\frac{1}{a}$(a>0,且a≠1)
(I)當a=e時,求函數(shù)y=f(x)在x=1處的切線方程;
(Ⅱ)若函數(shù)f(x)只有一個零點,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設函數(shù)f(x)定義在實數(shù)集上,f(2-x)=f(x),且當x≥1時,f(x)=ln x,則f($\frac{1}{3}$),f($\frac{1}{2}$),f(2)三個數(shù)由小到大的排列順序為f($\frac{1}{2}$)<f($\frac{1}{3}$)<f(2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.4張卡片上分別寫有數(shù)字1,2,3,4,從這4張卡片中依次抽取2張(取后不放回),則在已知第一次取到奇數(shù)數(shù)字卡片的條件下,第二次取出的卡片數(shù)字是偶數(shù)的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知在△ABC中,內角A、B、C所對的邊分別是a、b、c,若$a+c=\sqrt{10}$,b=2,$B=\frac{π}{3}$,則△ABC的面積為$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

同步練習冊答案