17.設(shè)函數(shù)f(x)定義在實(shí)數(shù)集上,f(2-x)=f(x),且當(dāng)x≥1時(shí),f(x)=ln x,則f($\frac{1}{3}$),f($\frac{1}{2}$),f(2)三個(gè)數(shù)由小到大的排列順序?yàn)閒($\frac{1}{2}$)<f($\frac{1}{3}$)<f(2).

分析 轉(zhuǎn)化f($\frac{1}{3}$),f($\frac{1}{2}$),f(2)三個(gè)數(shù),再利用f(x)在(2,+∞)上單調(diào)遞增,得出結(jié)論.

解答 解:∵f(2-x)=f(x),則f($\frac{1}{3}$)=f(2-$\frac{1}{3}$)=f($\frac{5}{3}$),f($\frac{1}{2}$)=f(2-$\frac{1}{2}$)=f($\frac{3}{2}$),
當(dāng)x≥1時(shí),f(x)=ln x,故f(x)在(2,+∞)上單調(diào)遞增.
由2>$\frac{5}{3}$>$\frac{3}{2}$,可得f($\frac{1}{2}$)<f($\frac{1}{3}$)<f(2),
故答案為:f($\frac{1}{2}$)<f($\frac{1}{3}$)<f(2).

點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.y=$\sqrt{lo{g}_{\frac{1}{2}}(3x-2)}$的定義域是($\frac{2}{3},1$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,a=7,b=4$\sqrt{3},c=\sqrt{13}$,則△ABC的最小角為$\frac{π}{6}$弧度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.$\underset{lim}{n→∞}$($\frac{2n+1}{2n-1}$)3n=e3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知△ABC的三個(gè)內(nèi)角為A,B,C,其所對(duì)的邊長(zhǎng)分別為a,b,c,若滿足向量$\overrightarrow m$=(b-a,c-a),$\overrightarrow n$=(a+c,b)共線,則$\sqrt{3}$tanAtanB-tanA-tanB等于( 。
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.學(xué)校藝術(shù)節(jié)對(duì)同一類的A,B,C,D四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品獲獎(jiǎng)情況預(yù)測(cè)如下:
甲說:“C或D 作品獲得一等獎(jiǎng)”
乙說:“A 作品獲得一等獎(jiǎng)”
丙說:“B,D 兩項(xiàng)作品未獲得一等獎(jiǎng)”
丁說:“C 作品獲得一等獎(jiǎng)”
若這四位同學(xué)中有且僅有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知1<a<$\frac{3}{2}$,則$\frac{2}{a-1}$+$\frac{1}{3-2a}$的最小值為( 。
A.$\frac{9}{2}$B.7C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.?dāng)?shù)列{an}滿足a1=1,$\sqrt{{{a}_{n}}^{2}+2}$=an+1(n∈N+).
(1)求證:數(shù)列{an2}是等差數(shù)列,并求出{an}的通項(xiàng)公式;
(2)若bn=$\frac{2}{{a}_{n}+{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知某商品的價(jià)格x(元)與需求量y(件)之間的關(guān)系有如下一組數(shù)據(jù):
x1416182022
y1210753
(1)求$\overline{x}$,$\overline{y}$;
(2)求出回歸直線方程
(3)計(jì)算相關(guān)系數(shù)r的值,并說明回歸模型擬合程度的好壞.
(參考公式:$\hat b=\frac{{\sum{{x_i}{y_i}-n\bar x\bar y}}}{{\sum{x_i^2-n{{\bar x}^2}}}}=\frac{{\sum{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum{{{({x_i}-\overline x)}^2}}}}$$\hat a=\bar y-\hat b\bar x$,$r=\frac{{\sum{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum{{{({x_i}-\overline x)}^2}•\sum{{{({y_i}-\overline y)}^2}}}}}}$)
參考數(shù)據(jù):$\sum_{i=1}^5{{{({x_i}-\overline x)}^2}}=40,\sum_{i=1}^5{x_i}{y_i}=620,\sum_{i=1}^5{(y_i^{\;}}-\overline y{)^2}=53.2,\sqrt{133}≈11.53$
當(dāng)n-2=3,r0.05=0.878.

查看答案和解析>>

同步練習(xí)冊(cè)答案