4.在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中點,M是AO上一點,且$\overrightarrow{AO}$=3$\overrightarrow{MO}$,則$\overrightarrow{MB}$$•\overrightarrow{MC}$的值是( 。
A.-$\frac{5}{3}$B.-$\frac{7}{6}$C.-$\frac{7}{3}$D.-$\frac{5}{6}$

分析 利用已知條件,建立直角坐標系,求出相關(guān)點的坐標,然后求解向量的數(shù)量積.

解答 解:建立如圖所示的直角坐標系:
在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中點,M是AO上一點,且$\overrightarrow{AO}$=3$\overrightarrow{MO}$,
則A(0,0),B(1,0),C(-1,$\sqrt{3}$),O(0,$\frac{\sqrt{3}}{2}$),
M(0,$\frac{\sqrt{3}}{3}$),$\overrightarrow{MB}$=(1,-$\frac{\sqrt{3}}{3}$),$\overrightarrow{MC}$=(-1,$\frac{2\sqrt{3}}{3}$)
$\overrightarrow{MB}$$•\overrightarrow{MC}$=-1-$\frac{2}{3}$=-$\frac{5}{3}$.
故選:A.

點評 本題考查向量在幾何中的應(yīng)用,向量的數(shù)量積的求法,考查數(shù)形結(jié)合以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在($\sqrt{x}$-1)4•(x-1)2的展開式中,x項的系數(shù)為( 。
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在推理“因為y=sinx在[0,$\frac{π}{2}$]上是增函數(shù),所以sin$\frac{3π}{7}$>sin$\frac{2π}{5}$”中,大前提是y=sinx在[0,$\frac{π}{2}$]上是增函數(shù);小前提是$\frac{3π}{7}$>$\frac{2π}{5}$且 $\frac{3π}{7}$,$\frac{2π}{5}$∈[0,$\frac{π}{2}$];結(jié)論是sin$\frac{3π}{7}$>sin$\frac{2π}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|0<x≤3,x∈N},B={x|y=$\sqrt{{x}^{2}-1}$},則集合A∩B為( 。
A.{1,2}B.{1,2,3}C.{0,1,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x|0<x≤3,x∈N},B={x|y=$\sqrt{{x}^{2}-9}$},則集合A∩(∁RB)=(  )
A.{1,2}B.{1,2,3}C.{0,1,2}D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥3}\\{f(x+1),x<3}\end{array}\right.$f(log23)的值為(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{12}$D.$\frac{1}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知復(fù)數(shù)z滿足z•(i-1)=1+i,則z的共軛復(fù)數(shù)$\overline{z}$的虛部是( 。
A.1B.-iC.iD.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左,右焦點為F1,F(xiàn)2,離心率為e.P是橢圓上一點,滿足PF2⊥F1F2,點Q在線段PF1上,且$\overrightarrow{{F_1}Q}=2\overrightarrow{QP}$.若$\overrightarrow{{F_1}P}•\overrightarrow{{F_2}Q}$=0,則e2=( 。
A.$\sqrt{2}-1$B.$2-\sqrt{2}$C.$2-\sqrt{3}$D.$\sqrt{5}-2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在同一坐標系中,曲線y=($\frac{1}{3}$)x與拋物線y2=x的交點橫坐標所在區(qū)間為(  )
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{2}{3}$)D.($\frac{2}{3}$,1)

查看答案和解析>>

同步練習(xí)冊答案