16.已知函數(shù)f(x)=sin(wx+$\frac{π}{3}$)(w>0)的最小正周期為π,則該函數(shù)的圖象關(guān)于( 。⿲(duì)稱.
A.點(diǎn)($\frac{π}{3}$,0)B.直線x=$\frac{π}{4}$C.點(diǎn)($\frac{π}{4}$,0)D.直線x=$\frac{π}{3}$

分析 利用正弦函數(shù)的周期性求得w的值,可得函數(shù)的解析式,再利用正弦函數(shù)的圖象的對(duì)稱性,得出結(jié)論.

解答 解:∵函數(shù)f(x)=sin(wx+$\frac{π}{3}$)(w>0)的最小正周期為π,∴$\frac{2π}{w}$=π,∴w=2,f(x)=sin(2x+$\frac{π}{3}$),
令x=$\frac{π}{3}$,則2x+$\frac{π}{3}$=π,f(x)=0,故函數(shù)的圖象關(guān)于點(diǎn)($\frac{π}{3}$,0)對(duì)稱,故A滿足條件,D不滿足條件;
令x=$\frac{π}{4}$,則2x+$\frac{π}{3}$=$\frac{5}{6}$π,f(x)=$\frac{1}{2}$,故函數(shù)的圖象不關(guān)于直線x=$\frac{π}{4}$對(duì)稱,也不關(guān)于點(diǎn)($\frac{π}{4}$,0)對(duì)稱,故B、C不滿足條件,
故選:A.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的周期性以及圖象的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知$|{\overrightarrow a}|=3,|{\overrightarrow b}|=4$,且 $\overrightarrow a$與$\overrightarrow b$的夾角為30°,求
(1)$\overrightarrow a•\overrightarrow b$
(2)${(\overrightarrow a-\overrightarrow b)^2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知二次函數(shù)f(x)=mx2+4x+1,且滿足f(-1)=f(3).
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)的定義域?yàn)椋?2,2],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若函數(shù)f(x)為R上的奇函數(shù),且在[0,+∞)上單調(diào)遞減,又f(sinx-1)>-f(sinx),x∈[0,π],則x的取值范圍是( 。
A.($\frac{π}{3}$,$\frac{2π}{3}$)B.[0,$\frac{π}{3}$]∪($\frac{2π}{3}$,π]C.[0,$\frac{π}{6}$)∪($\frac{5π}{6}$,π]D.($\frac{π}{6}$,$\frac{5π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.求函數(shù)f(x)=x3+x+1的圖象在點(diǎn)(1,f(1))處的切線方程4x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知復(fù)數(shù)z=1+i,則下列命題中正確的個(gè)數(shù)為( 。
①$|z|=\sqrt{2}$;②$\overline z=1-i$;③z的虛部為i;④z在復(fù)平面上對(duì)應(yīng)點(diǎn)在第一象限.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知如表格所示數(shù)據(jù)的回歸直線方程為$\widehat{y}=3.8x+a$,則a的值為240.
 2 5 6
 y252  255 258263  267

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.某幾何體的三視圖如圖所示,其體積為( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{10}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知acosB+bcosA=$\frac{a+b}{2}$,則C的最大值為$\frac{π}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案