19.已知定義在R上的奇函數(shù)f(x)滿足:當(dāng)x≥0時(shí),f(x)=log2(x+m),則f(m-16)=( 。
A.4B.-4C.2D.-2

分析 由題意,f(0)=0,求出m,根據(jù)奇函數(shù)的性質(zhì),轉(zhuǎn)化為求其相反數(shù)的函數(shù)值,即可得出結(jié)論.

解答 解:由題意,f(0)=0,即log2m=0,
∴m=1,
∴f(m-16)=f(-15)=-f(15)=-log216=-4,
故選B.

點(diǎn)評(píng) 本題考查奇函數(shù)的性質(zhì),轉(zhuǎn)化思想,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.橢圓$\frac{x^2}{36}+\frac{y^2}{20}=1$的左頂點(diǎn)為A,右焦點(diǎn)為F,點(diǎn)P在橢圓上,且位于第一象限,當(dāng)△PAF是直角三角形時(shí),S△PAF=( 。
A.$\frac{{25\sqrt{3}}}{4}$或$\frac{20}{3}$B.$\frac{25\sqrt{3}}{2}$或$\frac{50}{3}$C.$\frac{25\sqrt{3}}{4}$或$\frac{10}{3}$D.$\frac{25\sqrt{3}}{2}$或$\frac{20}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知拋物線y=ax2(a>0)的焦點(diǎn)到準(zhǔn)線的距離為2,則a=( 。
A.4B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=2|cosx|sinx+sin2x,給出下列四個(gè)命題:
①函數(shù)f(x)的圖象關(guān)于直線$x=\frac{π}{4}$對(duì)稱;
②函數(shù)f(x)在區(qū)間$[-\frac{π}{4},\frac{π}{4}]$上單調(diào)遞增;
③函數(shù)f(x)的最小正周期為π;
④函數(shù)f(x)的值域?yàn)閇-2,2].
其中真命題的序號(hào)是②④.(將你認(rèn)為真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若變量x,y滿足$\left\{\begin{array}{l}x+y≤2\\ 2x-3y≤9\\ x≥0\end{array}\right.$,則x2+2x+y2的最大值是(  )
A.4B.9C.16D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=ln$\frac{1}{1-x}$的定義域?yàn)椋?∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.據(jù)某市地產(chǎn)數(shù)據(jù)研究院的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價(jià)走勢(shì)如圖所示,為抑制房價(jià)過快上漲,政府從8月份采取宏觀調(diào)控措施,10月份開始房價(jià)得到很好的抑制.

(Ⅰ)地產(chǎn)數(shù)據(jù)研究院研究發(fā)現(xiàn),3月至7月的各月均價(jià)y(萬元/平方米)與月份x之間具有較強(qiáng)的線性相關(guān)關(guān)系,試建立y關(guān)于x的回歸方程(系數(shù)精確到0.01),政府若不調(diào)控,依次相關(guān)關(guān)系預(yù)測第12月份該市新建住宅銷售均價(jià);
(Ⅱ)地產(chǎn)數(shù)據(jù)研究院在2016年的12個(gè)月份中,隨機(jī)抽取三個(gè)月份的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個(gè)月份的所屬季度,記不同季度的個(gè)數(shù)為X,求X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):$\sum_{i=1}^{5}{x}_{i}$=25,$\sum_{i=1}^{5}{y}_{i}$=5.36,$\sum_{i=1}^{5}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=0.64
回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中斜率和截距的最小二乘估計(jì)公式分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1的左、右焦點(diǎn)分別為F1、F2,且F2為拋物線y2=2px的焦點(diǎn),設(shè)P為兩曲線的一個(gè)公共點(diǎn),則△PF1F2的面積為( 。
A.18B.18$\sqrt{3}$C.36D.36$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.一艘輪船在江中向正東方向航行,在點(diǎn)P觀測到燈塔A、B在一直線上,并與航線成角α(0°<α<90°),輪船沿航線前進(jìn)b米到達(dá)C處,此時(shí)觀測到燈塔A在北偏西45°方向,燈塔B在北偏東β(0°<β<90°)方向,0°<α+β<90°,求CB;(結(jié)果用α,β,b表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案