分析 由已知利用誘導公式,同角三角函數(shù)基本關系式可求cos($\frac{π}{2}$-A),利用余弦定理,基本不等式可求bc≤3,進而利用三角形面積公式即可計算得解.
解答 解:∵a=2,cosA=$\frac{1}{3}$,則cos($\frac{π}{2}$-A)=sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{2\sqrt{2}}{3}$,
∴由余弦定理可得:22=b2+c2-2×b×c×$\frac{1}{3}$≥2bc-$\frac{2}{3}$bc,解得:bc≤3,(當且僅當b=c時等號成立)
∴S△ABC=$\frac{1}{2}$bcsinA≤$\frac{1}{2}×3×\frac{2\sqrt{2}}{3}$=$\sqrt{2}$.
故答案為:$\frac{2\sqrt{2}}{3}$,$\sqrt{2}$.
點評 本題主要考查了誘導公式,同角三角函數(shù)基本關系式,余弦定理,基本不等式,三角形面積公式在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題..
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
人數(shù) | 數(shù)學 | |||
優(yōu)秀 | 良好 | 及格 | ||
地理 | 優(yōu)秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | a | 4 | b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{4}$$\overrightarrow{AB}$$+\frac{2}{3}$$\overrightarrow{AD}$ | B. | $\frac{2}{3}$$\overrightarrow{AB}$$+\frac{1}{2}$$\overrightarrow{AD}$ | C. | $\frac{4}{5}$$\overrightarrow{AB}$$+\frac{3}{4}$$\overrightarrow{AD}$ | D. | $\frac{5}{4}$$\overrightarrow{AB}$$+\frac{4}{3}$$\overrightarrow{AD}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{3}$ | C. | 4 | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com