11.已知函數(shù)f(x)=$\sqrt{a{x}^{2}+bx+5}$的定義域為{x|-1≤x≤5},求a+b的值.

分析 根據(jù)函數(shù)f(x)的定義域知不等式ax2+bx+5≥0的解集,
再利用根與系數(shù)的關(guān)系求出a、b的值.

解答 解:函數(shù)f(x)=$\sqrt{a{x}^{2}+bx+5}$的定義域為{x|-1≤x≤5},
∴ax2+bx+5≥0的解集為{x|-1≤x≤5},
∴一元二次方程ax2+bx+5≥0的實數(shù)根為-1和5,
∴-1+5=-$\frac{a}$,且-1×5=$\frac{5}{a}$;
解得a=-1且b=4,
∴a+b=3.

點評 本題考查了函數(shù)的定義域與不等式解集的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{y-3x+1≥0}\end{array}\right.$,則z=x+2y的最小值是(  )
A.-3B.$\frac{3}{2}$C.-$\frac{1}{4}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若復(fù)平面上的點A、B分別表示復(fù)數(shù)1和i,線段AB的中點所對應(yīng)的復(fù)數(shù)為z,則|z|=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=x2+2f′(1)x,則${∫}_{0}^{1}$($\sqrt{1-{x}^{2}}$+f(x))dx=( 。
A.$\frac{2}{3}$+$\frac{π}{2}$B.-$\frac{2}{3}$+$\frac{π}{2}$C.$\frac{5}{3}$+$\frac{π}{4}$D.-$\frac{5}{3}$+$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知單位向量$\overrightarrow{a}$,$\overrightarrow$,且$\overrightarrow{a}$•$\overrightarrow$=0,若t∈[0,1],則|t($\overrightarrow$-$\overrightarrow{a}$)+$\overrightarrow{a}$|+|$\frac{5}{12}$$\overrightarrow$+(1-t)($\overrightarrow{a}$-$\overrightarrow$)|的最小值為(  )
A.$\frac{{\sqrt{193}}}{12}$B.$\frac{13}{12}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,若a=2,cosA=$\frac{1}{3}$,則cos($\frac{π}{2}$-A)=$\frac{2\sqrt{2}}{3}$,△ABC面積的最大值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.執(zhí)行如圖所示的算法框圖,如果輸出的函數(shù)值在區(qū)間[$\frac{1}{2}$,2)內(nèi),則輸入的實數(shù)x的取值范圍是[-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在等比數(shù)列{an}中,若an>an+1,且a7•a14=6,a4+a17=5,則$\frac{a_5}{{{a_{18}}}}$=( 。
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{1}{6}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知圓C經(jīng)過點A(1,3),B(2,2),并且直線m:3x-2y=0平分圓C.
(1)求圓C的方程;
(2)若直線l:y=kx+2與圓C交于M,N兩點,是否存在直線l,使得$\overrightarrow{OM}$•$\overrightarrow{ON}$=6(O為坐標(biāo)原點),若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案