12.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若S3=-3,S7=7,則S5=0.

分析 利用等差數(shù)列通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此能求出S5

解答 解:∵Sn是等差數(shù)列{an}的前n項(xiàng)和,S3=-3,S7=7,
∴$\left\{\begin{array}{l}{3{a}_{1}+\frac{3×2}{2}d=-3}\\{7{a}_{1}+\frac{7×6}{2}d=7}\end{array}\right.$,
解得a1=-2,d=1,
∴S5=5a1+$\frac{5×4}{2}d$=5×(-2)+$\frac{5×4}{2}×1$=0.
故答案為:0.

點(diǎn)評(píng) 本題考查等差數(shù)列的前5項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.底面是邊長(zhǎng)為1的正方形,側(cè)面是等邊三角形的四棱錐的外接球的體積為( 。
A.$\frac{2\sqrt{2}π}{3}$B.$\frac{\sqrt{2}π}{3}$C.$\frac{2\sqrt{3}π}{3}$D.$\frac{\sqrt{3}π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知復(fù)數(shù)z=(2+3i)i,在復(fù)平面內(nèi)與復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(-3,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx-$\frac{π}{6}$)-$\frac{1}{2}$(ω>0),函數(shù)圖象的對(duì)稱(chēng)中心到對(duì)稱(chēng)軸的最小距離為$\frac{π}{4}$,將函數(shù)f(x)的圖象向右平移$\frac{π}{12}$個(gè)單位長(zhǎng)度得到函數(shù)g(x)的圖象,若g(x)-3≤m≤g(x)+3在x∈[0,$\frac{π}{3}$]上恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.[-2,1]B.[-5,1]C.[-2,4]D.[-5,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=lnx-ax+a,a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a=-1時(shí),關(guān)于x的方程2m[f(x)-a]=x2(m>0)有唯一實(shí)數(shù)解,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.有下述說(shuō)法:①a>b>0是a2>b2的充分不必要條件.②a>b>0是$\frac{1}{a}<\frac{1}$的充要條件.③a>b>0是a3>b3的充要條件.則其中正確的說(shuō)法有( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x+$\frac{a^2}{x}$,g(x)=-x-ln(-x)其中a≠0,
(1)若x=1是函數(shù)f(x)的極值點(diǎn),求實(shí)數(shù)a的值及g(x)的單調(diào)區(qū)間;
(2)若對(duì)任意的x1∈[1,2],?x2∈[-3,-2]使得f(x1)≥g(x2)恒成立,且-2<a<0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知等比數(shù)列{an}的前n項(xiàng)和Sn=$\frac{{4}^{n}-1}{3}$,則數(shù)列{$\sqrt{{a}_{n}}$}的前n項(xiàng)和Tn=(  )
A.2n-1B.$\sqrt{\frac{{4}^{n}-1}{3}}$C.$\frac{{2}^{n}-1}{3}$D.$\frac{{2}^{n+1}-3}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知f(x)=x(2016+lnx),f′(x0)=2017,則x0等于1.

查看答案和解析>>

同步練習(xí)冊(cè)答案