A. | [-2,1] | B. | [-5,1] | C. | [-2,4] | D. | [-5,4] |
分析 根據(jù)圖象的對稱中心到對稱軸的最小距離為$\frac{π}{4}$,可得周期T=π,求出ω,利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求出g(x),x∈[0,$\frac{π}{3}$]上,求出g(x)范圍,可得m的范圍.
解答 解:由題意,圖象的對稱中心到對稱軸的最小距離為$\frac{π}{4}$,
∴周期T=π,即$\frac{2π}{ω}=π$
∴ω=2,
∴f(x)=$\sqrt{3}$sin(2x-$\frac{π}{6}$)-$\frac{1}{2}$.
f(x)的圖象向右平移$\frac{π}{12}$個單位長度,得到:$\sqrt{3}$sin(2x-$\frac{π}{6}$-$\frac{π}{6}$)-$\frac{1}{2}$=$\sqrt{3}$sin(2x-$\frac{π}{3}$)$-\frac{1}{2}$=g(x);
∵x∈[0,$\frac{π}{3}$]上,
∴2x-$\frac{π}{3}$∈[$-\frac{π}{3}$,$\frac{π}{3}$]
sin(2x-$\frac{π}{3}$)∈[$-\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$]
則g(x)∈[-2,1]
要使g(x)-3≤m≤g(x)+3在x∈[0,$\frac{π}{3}$]上恒成立,
則:1-3≤m≤-2+3,
可得:-2≤m≤1,
故選A.
點(diǎn)評 本題主要考查三角函數(shù)的性質(zhì)求解析式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,恒成立的問題轉(zhuǎn)化為最值為,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | c<b<a | C. | b<a<c | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
喜歡外賣 | 不喜歡外賣 | 合計 | |
90后 | 20 | 5 | 25 |
80后 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | n>2 | B. | n>3 | C. | n>4 | D. | n>5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com