7.若復(fù)數(shù)z滿足$\frac{z+i}{-2{i}^{3}-z}$=i,則|$\overline{z}$+1|=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

分析 利用復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義、模的計算公式即可得出.

解答 解:∵復(fù)數(shù)z滿足$\frac{z+i}{-2{i}^{3}-z}$=i,∴z+i=-2-zi,化為:z=$\frac{-2-i}{1+i}$=$\frac{-(2+i)(1-i)}{(1+i)(1-i)}$=-$\frac{3}{2}$+$\frac{1}{2}$i.
$\overline{z}$=-$\frac{3}{2}$-$\frac{1}{2}$i.
則|$\overline{z}$+1|=$|-\frac{1}{2}+\frac{1}{2}i|$=$\sqrt{(-\frac{1}{2})^{2}+(\frac{1}{2})^{2}}$=$\frac{\sqrt{2}}{2}$.
故選:B.

點評 本題考查了復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義、模的計算公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知復(fù)數(shù)$\frac{1}{z}=-5i$,則$\overline z$等于( 。
A.-$\frac{i}{5}$B.$\frac{i}{5}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知關(guān)于x的方程169x2-bx+60=0的兩根為sinθ,cosθ,$θ∈({\frac{π}{4}\;,\;\;\frac{3π}{4}})$.
(1)求實數(shù)b的值;
(2)求$\frac{sinθ}{1-cosθ}+\frac{1+cosθ}{sinθ}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|x2<4},B={-1,0,1,2,3},則A∩B=( 。
A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|x+2|-|x-1|
(1)求該函數(shù)值域;
(2)設(shè)$g(x)=\frac{{a{x^2}-3x+3}}{x}(a>0)$,若?s∈(0,+∞),?t∈R,恒有g(shù)(s)≥f(t)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,球面上有A,B,C三點,∠ABC=90°,BA=BC=2,球心O到平面ABC的距離為$\sqrt{2}$,則球的體積為$\frac{32}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某三棱錐的三視圖如圖所示,該三棱錐的體積是( 。
A.2B.4C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖的程序運行后輸出的結(jié)果是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知5件產(chǎn)品中有2件次品,其余為合格品.現(xiàn)從這5件產(chǎn)品中任取2件,恰有一件次品的概率為$\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊答案