18.已知ξ的分布列為
ξ-101
P$\frac{1}{2}$$\frac{1}{3}$$\frac{1}{6}$
若η=2ξ+2,則D(η)的值為( 。
A.-$\frac{1}{3}$B.$\frac{5}{9}$C.$\frac{10}{9}$D.$\frac{20}{9}$

分析 由ξ的分布列,先求出E(ξ),再求出D(ξ),由此能求出D(η)的值.

解答 解:由ξ的分布列,得:
E(ξ)=-1×$\frac{1}{2}$+0×$\frac{1}{3}$+1×$\frac{1}{6}$=-$\frac{1}{3}$,
D(ξ)=(-1+$\frac{1}{3}$)2×$\frac{1}{2}$+(0+$\frac{1}{3}$)2×$\frac{1}{3}$+(1+$\frac{1}{3}$)2×$\frac{1}{6}$=$\frac{5}{9}$,
∵η=2ξ+2,
∴D(η)=4D(ξ)=4×$\frac{5}{9}$=$\frac{20}{9}$.
故選:D.

點評 本題考查離散型隨機變量的方差的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意離散型隨機變量的分布列和方差性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,點A,B是單位圓上的兩點,點C是圓與x軸正半軸的交點,若點A的坐標(biāo)為(-$\frac{3}{5}$,$\frac{4}{5}$),記∠COA=α,且△AOB是正三角形.
(Ⅰ)求$\frac{1+sin2α}{1+cos2α}$的值;
(Ⅱ)求cos∠COB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中點.求證:平面PDC⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.給定數(shù)列a1,a2,…,an,對i=1,2,…,n-1,該數(shù)列前i項的最大值記為Ai,后n-i項的最小值記為Bi,di=Ai-Bi
(1)設(shè)an=$\frac{1}{3}$×2n-1,求d5;
(2)設(shè)a1,a2,…,an(n≥4)是公比大于1的等比數(shù)列,且a1>0時,證明:d1,d2,…,dn-1成等比數(shù)列;
(3)設(shè)d1,d2,…,dn-1是公差大于0的等差數(shù)列,且d1>0,證明:a1,a2,…,an-1成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.D(aX+E(X2)-D(X))等于( 。
A.無法求B.0C.a2D(X)D.2aD(X)+(E(X))2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,C,D兩處相距6000m,∠ACD=45°,∠ADC=75°,∠BDC=15°,∠BCD=30°,AD⊥BD,則點A到B的距離為( 。
A.1000$\sqrt{42}$mB.1000$\sqrt{6}$mC.1000$\sqrt{24}$mD.1000m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.拋擲紅、藍(lán)兩顆骰子,設(shè)事件A為“藍(lán)色骰子的點數(shù)為3或6”,事件B為“兩顆骰子的點數(shù)之和大于8”則P(B|A)的值為( 。
A.$\frac{1}{2}$B.$\frac{5}{36}$C.$\frac{5}{12}$D.$\frac{7}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.由曲線y=x,x=2,x=3,及x軸所圍成的平面圖形的面積用定積分表示為${∫}_{2}^{3}$xdx,其值等于$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=ln(2-3x),則f′($\frac{1}{3}$)=( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.-3D.-2

查看答案和解析>>

同步練習(xí)冊答案