2.為了解某班學生喜愛打籃球是否與性別有關,對該班50名學生進行了問卷調(diào)查,得到如圖的2×2列聯(lián)表.
喜愛打籃球不喜愛打籃球合計
男生20525
女生101525
合計302050
則至少有( 。┑陌盐照J為喜愛打籃球與性別有關.
附參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2>k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.78910.828
A.95%B.99%C.99.5%D.99.9%

分析 利用公式求得K2,與臨界值比較,即可得到結論.

解答 解:K2=$\frac{50×(20×15-10×5)^{2}}{30×20×25×25}$≈8.333>7.879
∴有99.5%的把握認為喜愛打籃球與性別有關.
故選C.

點評 本題考查獨立性檢驗知識,考查學生的計算能力,考查學生分析解決問題的能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.為得到函數(shù)y=sin(2x+$\frac{π}{6}$)的圖象,只需將函數(shù)y=sin2x的圖象( 。
A.向左平移$\frac{π}{3}$個長度單位B.向左平移$\frac{π}{6}$個長度單位
C.向左平移$\frac{π}{12}$個長度單位D.向右平移$\frac{π}{12}$個長度單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)=$\frac{4x-2}{x+1}$,由x1=a,xn+1=f(xn)產(chǎn)生的無窮數(shù)列{xn},對任意正整數(shù)n均有xn<xn+1成立,則a的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖,一個正六角星薄片(其對稱軸與水平面垂直)勻速地升長水面,直到全部露出水面為止,記時刻t薄片露出水面部分的圖形面積為S(t)(S(0)=0),則導函數(shù)y=S'(x)的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.集合A={x|x≥0},B={x|x2-1<0},則A∩B=(  )
A.(-1,0]B.[0,1]C.(-1,1)D.[0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知$cos({α+β})=\frac{2}{3},cos({α-β})=\frac{1}{3}$,則tanα•tanβ=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.將3個不同的小球放入4個不同的盒子中,則不同的放法種數(shù)有( 。
A.12B.14C.64D.81

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在△ABC中,內(nèi)角為A,B,C,若sinA=sinCcosB,則△ABC的形狀一定是直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若|$\overrightarrow{a}$|=5,|$\overrightarrow$|=$\sqrt{3}$,$\overrightarrow{a}$•$\overrightarrow$=-2,則$\overrightarrow{a}$在$\overrightarrow$方向上的投影等于-$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步練習冊答案