12.某中學(xué)為了增強(qiáng)學(xué)生的漢語(yǔ)興趣,舉行了漢字成語(yǔ)聽(tīng)寫(xiě)競(jìng)賽,共有450名學(xué)生參加了本次競(jìng)賽活動(dòng)(其中高一225人,高二135人,高三90人),為了解本次競(jìng)賽活動(dòng)成績(jī)情況,現(xiàn)用分層抽樣的方法從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),分值l00分)進(jìn)行統(tǒng)計(jì),請(qǐng)你根據(jù)尚未完成的頻率分布表解答下列問(wèn)題:
分組頻數(shù)頻率
[60,70)0.16
[70,80)14
[80,90)160.32
[90,100]0.24
合計(jì)
(1)求①,②,③處的數(shù)值;
(2)求高二年級(jí)共抽取多少人;
(3)估計(jì)參賽學(xué)生平均成績(jī).

分析 (1)根據(jù)頻數(shù)、頻率與樣本容量的關(guān)系,即可求出對(duì)應(yīng)的值;
(2)根據(jù)分層抽樣原理即可求出高二年級(jí)抽取的人數(shù);
(3)根據(jù)頻率分布表,即可計(jì)算參賽學(xué)生的平均成績(jī).

解答 解:(1)根據(jù)[80,90)內(nèi)的頻數(shù)為16,頻率為0.32,
得出樣本容量是$\frac{16}{0.32}$=50,
所以①處的頻數(shù)為50×0.24=12,
②處的頻率為$\frac{14}{50}$=0.28,
③處的頻數(shù)為50×0.16=8;
(2)根據(jù)分層抽樣原理得,高二年級(jí)共抽取
135×$\frac{50}{450}$=15(人);
(3)根據(jù)頻率分布表,估計(jì)參賽學(xué)生平均成績(jī)?yōu)?br />65×0.16+75×0.28+85×0.32+95×0.24=81.4.

點(diǎn)評(píng) 本題考查了頻數(shù)、頻率與樣本容量以及分層抽樣原理和平均數(shù)的計(jì)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)f(x)=Asin(2x-φ)的圖象關(guān)于點(diǎn)($\frac{4π}{3}$,0)成中心對(duì)稱,則|φ|最小的φ的值為( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.-$\frac{π}{3}$D.-$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=2an-3n(n∈N*).
(1)求a1,a2的值,
(2)求證:數(shù)列{an+3}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(3)在數(shù)列{Sn}中取出若干項(xiàng)S${\;}_{{n}_{1}}$,S${\;}_{{n}_{2}}$,S${\;}_{{n}_{3}}$,…,S${\;}_{{n}_{k}}$,…,若數(shù)列{nk}是等差數(shù)列,試判斷數(shù)列{S${\;}_{{n}_{k}}$}是否為等差數(shù)列,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{x+4}{x}$與g(x)=|x2-6x|的定義域?yàn)閇1,4].
(1)求這兩個(gè)函數(shù)的值域并作處這兩個(gè)函數(shù)的圖象;
(2)若函數(shù)g(x)的圖象與直線y=k僅有一個(gè)交點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.給出下列四個(gè)命題:
(1)函數(shù)f(x)=loga(2x-1)-1的圖象過(guò)定點(diǎn)(1,0);
(2)函數(shù)y=log2x與函數(shù)y=2x互為反函數(shù);
(3)已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≤0時(shí),f(x)=x(x+1),則f(x)的解析式為f(x)=x2-|x|;
(4)若loga$\frac{1}{2}$>1,則a的取值范圍是($\frac{1}{2}$,1)或(2,+∞);
(5)函數(shù)y=loga(5-ax)在區(qū)間[-1,3)上單調(diào)遞減,則a的范圍是(1,$\frac{5}{3}$];
其中所有正確命題的序號(hào)是(2)(3)(5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=x2-(k-2)x+k2+3k+5有兩個(gè)零點(diǎn).
(1)若函數(shù)的兩個(gè)零點(diǎn)都大于-2,求k的取值范圍;
(2)若函數(shù)的兩個(gè)零點(diǎn)是α和β,求α22的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.滿足a,b∈{0,1,2 },且關(guān)于x的方程ax2+2x+b=0有實(shí)數(shù)解的有序數(shù)對(duì)(a,b)的個(gè)數(shù)為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{x}$+alnx,a∈R.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)當(dāng)x∈[$\frac{1}{2}$,1]時(shí),f(x)的最小值是0,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知命題p:0<m<4是函數(shù)f(x)=mx2-mx+1恒大于0的充分不必要條件;命題q:f(x)=2x2是冪函數(shù).則下列命題是真命題的是(  )
A.p∧qB.¬p∨qC.¬p∧¬qD.p∧¬q

查看答案和解析>>

同步練習(xí)冊(cè)答案