16.執(zhí)行如圖所示的程序框圖,則輸出s的值為( 。
A.$\sqrt{2018}-1$B.$\sqrt{2017}-1$C.$\sqrt{2016}-1$D.$\sqrt{2015}-1$

分析 根據(jù)所給數(shù)值判定是否滿足判斷框中的條件,然后執(zhí)行循環(huán)語(yǔ)句,一旦不滿足條件就退出循環(huán),輸出結(jié)果.

解答 解:第一次循環(huán),n=1,s=0,s=$\sqrt{2}$-1<2017,
第二次循環(huán),n=2,s=$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$=$\sqrt{3}$-1<2017,
第三次循環(huán),n=3,s=$\sqrt{4}$-11<2017,
第四次循環(huán),n=4,s=$\sqrt{5}$-1,
…,
第2017次循環(huán),n=2017,s=$\sqrt{2018}$-1,
第2018次循環(huán),n=2018>2017,
滿足條件,跳出循環(huán),輸出s=$\sqrt{2018}$-1,
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖,其中根據(jù)循環(huán)條件判斷出循環(huán)變量的終值,進(jìn)而結(jié)合循環(huán)體分析出程序的功能是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.四名教師被分到甲、乙、丙三所學(xué)校參加工作,每所學(xué)校至少一名教師.
(Ⅰ)求A、B兩名教師被同時(shí)分配到甲學(xué)校的概率;
(Ⅱ)求A、B兩名教師不在同一學(xué)校的概率;
(Ⅲ)設(shè)隨機(jī)變量ξ為這四名教師中分配到甲學(xué)校的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在邊長(zhǎng)為3的正方形ABCD中,點(diǎn)P,Q分別在邊CD、BC上,滿足DP=1,CQ=QB.則∠PAQ的大小是$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在拋物線y2=4a(x+a)(a>0),設(shè)有過原點(diǎn)O作一直線分別交拋物線于A、B兩點(diǎn),如圖所示,試求|OA|•|OB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知點(diǎn)P(x,y)的坐標(biāo)滿足條件$\left\{\begin{array}{l}x-y≤4\\ x+y≤0\\ x≥0\end{array}\right.$,若點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)M(-1,-1),那么$\overrightarrow{OM}•\overrightarrow{OP}$的最大值等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦點(diǎn)分別關(guān)于兩條漸近線的對(duì)稱點(diǎn)重合,則雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,四邊形ABCD是直角梯形,AB⊥BC,AB∥CD,AB=2BC=2CD=2.
(Ⅰ)求證:平面PBC⊥平面PAB;
(Ⅱ)若二面角B-PC-D的余弦值為-$\frac{\sqrt{2}}{3}$,求PA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在《爸爸去哪兒》第二季第四期中,村長(zhǎng)給6位“萌娃”布置一項(xiàng)搜尋空投食物的任務(wù).已知:①食物投擲地點(diǎn)有遠(yuǎn)、近兩處;②由于Grace年紀(jì)尚小,所以要么不參與該項(xiàng)任務(wù),但此時(shí)另需一位小孩在大本營(yíng)陪同,要么參與搜尋近處投擲點(diǎn)的食物;③所有參與搜尋任務(wù)的小孩須被均分成兩組,一組去遠(yuǎn)處,一組去近處,那么不同的搜尋方案有40種.(以數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,且∠ABC=120°,PA=PD,E為PB的中點(diǎn).
(1)證明:PD∥面ACE;
(2)若點(diǎn)P在面ABCD的射影在AD上,且BD與面ACE所成角為$\frac{π}{3}$,求PB.

查看答案和解析>>

同步練習(xí)冊(cè)答案