【題目】某出租車公司為了解本公司出租車司機對新法規(guī)的知曉情況,隨機對名出租車司機進行調查,調查問卷共道題,答題情況如下表:

答對題目數(shù)

I)如果出租車司機答對題目大于等于,就認為該司機對新法規(guī)的知曉情況比較好,試估計該公司的出租車司機對新法規(guī)知曉情況比較好的概率;

II)從答對題目數(shù)小于的出租車司機中選出人做進一步的調查,求選出的人中至少有一名女出租車司機的概率.

【答案】(I)(II).

【解析】

試題分析:(I)求出出租車司機答對題目數(shù)大于等于的人數(shù),代入古典概型概率計算公式,可得答案;(2)求出從答對題目數(shù)少于的出租車司機中任選出兩人的情況總數(shù)和選出的兩人中至少有一名女出租車司機的情況個數(shù),代入古典概型概率計算公式,可得答案.

試題解析:I)答對題目數(shù)小于的人數(shù)為,記答對題目數(shù)大于等于為事件,

. …………………(6分)

II)設答對題目數(shù)小于的司機為,,,其中,為女司機,任選出人包含,,,,,,,,,,共種,至少有一名女出租車司機的事件為,,,,,,,共種,記選出的人中至少有一名女出租車司機為事件,則.…………………(12分)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)若曲線處的切線的方程為,求實數(shù)的值;

(2)設,若對任意兩個不等的正數(shù),都有恒成立,求實數(shù)的取值范圍;

(3)若在上存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費,超過200度但不超過400度的部分按0.8元/度收費,超過400度的部分按1.0元/度收費.

(1)求某戶居民用電費用(單位:元)關于月用電量(單位:度)的函數(shù)解析式;

2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的點80%,求的值;

(3)在滿足(2)的條件下,估計1月份該市居民用戶平均用電費用(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6位選手參賽,在第一輪筆試環(huán)節(jié)中,評委將他們的筆試成績作為樣本數(shù)據(jù),繪制成如圖所示的莖葉圖.為了增加結果的神秘感,主持人暫時沒有公布甲、乙兩班最后一位選手的成績.

(Ⅰ)求乙班總分超過甲班的概率;

(Ⅱ)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分.請你從平均分和方差的角度來分析兩個班的選手的情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是奇函數(shù),且f(2).

(1)求實數(shù)mn的值;

(2)求函數(shù)f(x)在區(qū)間[-2,-1]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,過拋物線上一點作拋物線的切線軸于點,交軸于點,當時,

1)判斷的形狀,并求拋物線的方程;

2)若兩點在拋物線上,且滿足,其中點,若拋物線上存在異于的點,使得經(jīng)過三點的圓和拋物線在點處有相同的切線,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C (ab>0)的離心率為,點P(0,1)和點A(m,n)(m≠0)都在橢圓C上,直線PAx軸于點M.

(1)求橢圓C的方程,并求點M的坐標(用m,n表示);

(2)設O為原點,點B與點A關于x軸對稱,直線PBx軸于點N.問:y軸上是否存在點Q,使得∠OQM=∠ONQ?若存在,求點Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數(shù)方程為 (為參數(shù)).

(I)寫出直線的一般方程與曲線的直角坐標方程,并判斷它們的位置關系;

(II)將曲線向左平移個單位長度,向上平移個單位長度,得到曲線,設曲線經(jīng)過伸縮變換得到曲線,設曲線上任一點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了調查喜歡語文學科與性別的關系,隨機調查了一些學生情況,具體數(shù)據(jù)如下表:

調查統(tǒng)計

不喜歡語文

喜歡語文

13

10

7

20

為了判斷喜歡語文學科是否與性別有關系,根據(jù)表中的數(shù)據(jù),得到K2的觀測值

k=≈4.844,因為k≥3.841,根據(jù)下表中的參考數(shù)據(jù):

P(K2≥k0)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

判定喜歡語文學科與性別有關系,那么這種判斷出錯的可能性為( )

A. 95% B. 50% C. 25% D. 5%

查看答案和解析>>

同步練習冊答案