16.下列推理是演繹推理的是( 。
A.由 ${a_1}=1,{a_{n+1}}=\frac{a_n}{{1+{a_n}}}$,因為${a_1}=1,{a_2}=\frac{1}{2},{a_3}=\frac{1}{3},{a_4}=\frac{1}{4}$,故有${a_n}=\frac{1}{n}(n∈{N^*})$
B.科學(xué)家利用魚的沉浮原理制造潛艇
C.妲己惑紂王,商滅;西施迷吳王,吳滅;楊貴妃迷唐玄宗,致安史之亂,故曰:“紅顏禍水也”
D.《論語•學(xué)路》篇中說:“名不正,則言不順;言不順,則事不成;事不成,則禮樂不興;禮樂不興,則刑罰不中;刑罰不中,則民無所措手足;所以,名不正,則民無所措手足”.

分析 推理分為合情推理(特殊→特殊或特殊→一般)與演繹推理(一般→特殊),合情推理包括類比推理與歸納推理.根據(jù)合情推理與演繹推理的概念即可作出判斷.

解答 解:∵A,C中是從特殊→一般的推理,均屬于歸納推理,是合情推理;
B中,科學(xué)家利用魚的沉浮原理制造潛艇,是由特殊→特殊的推理,為類比推理,屬于合情推理;
D:為三段論,是從一般→特殊的推理,是演繹推理.
故選D.

點評 本題考查演繹推理,掌握幾種推理的定義和特點是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$),x=-$\frac{π}{4}$為f(x)的零點,x=$\frac{π}{4}$為y=f(x)圖象的對稱軸,且f(x)在($\frac{π}{18}$,$\frac{5π}{36}$)上單調(diào),則ω的最大值是(  )
A.5B.7C.9D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知△ABC中,AB=2,AC=3,tan∠BAC=2$\sqrt{2}$,D是BC邊上的點,且BD=3CD,則$\overrightarrow{AD}•\overrightarrow{BC}$=$\frac{19}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求函數(shù)y=sin($\frac{1}{2}$x+$\frac{π}{3}$),x∈[-2π,2π]的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.觀察下列不等式:$\sqrt{1•2}<\frac{3}{2}$,$\sqrt{1•2}+\sqrt{2•3}$<4,$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}<\frac{15}{2}$,
$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}+\sqrt{4•5}$<12,…
照此規(guī)律,第n個不等式為$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}+…+\sqrt{n(n+1)}<\frac{n(n+2)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.直角坐標平面上一機器人在行進中始終保持到兩點A(a,0)和B(0,1)的距離相等,且機器人也始終接觸不到直線L:y=x+1,則a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,某海上緝私小分隊駕駛緝私艇以40km/h的速度由A出出發(fā),沿北偏東60°方向進行海面巡邏,當(dāng)航行半小時到達B處時,發(fā)現(xiàn)北偏西45°方向有一艘船C,若船C位于A的北偏東30°方向上,則緝私艇所在的B處與船C的距離是( 。﹌m.
A.5($\sqrt{6}$+$\sqrt{2}$)B.5($\sqrt{6}$-$\sqrt{2}$)C.10($\sqrt{6}$+$\sqrt{2}$)D.10($\sqrt{6}$-$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)f(x)=|x-3|+|x-4|.
(1)解不等式f(x)≤2;
(2)已知實數(shù)x、y、z滿足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)y=2sin(x+$\frac{π}{2}$)cos(x-$\frac{π}{2}$)與直線y=$\frac{1}{2}$相交,若在y軸右側(cè)的交點自左向右依次記為M1,M2,M3,…,則|$\overrightarrow{{M}_{1}{M}_{12}}$|等于( 。
A.$\frac{16π}{3}$B.C.$\frac{17π}{3}$D.12π

查看答案和解析>>

同步練習(xí)冊答案