13.某廠在生產(chǎn)某產(chǎn)品的過程中,產(chǎn)量x(噸)與生產(chǎn)能耗y(噸)的對(duì)應(yīng)數(shù)據(jù)如表所示.根據(jù)最小二乘法求得回歸直線方程為$\widehat{y}$=0.7x+a.當(dāng)產(chǎn)量為80噸時(shí),預(yù)計(jì)需要生產(chǎn)能耗為59.5噸.
x30405060
y25304045

分析 求出x,y的平均數(shù),代入y關(guān)于x的線性回歸方程,求出a,把x=80代入,能求出當(dāng)產(chǎn)量為80噸時(shí),預(yù)計(jì)需要生成的能耗.

解答 解:由題意,$\overline{x}$=45,$\overline{y}$=35,代入$\widehat{y}$=0.7x+a,可得a=3.5,
∴當(dāng)產(chǎn)量為80噸時(shí),預(yù)計(jì)需要生成能耗為0.7×80+3.5=59.5,
故答案為:59.5.

點(diǎn)評(píng) 本題考查了最小二乘法,考查了線性回歸方程,解答的關(guān)鍵是知道回歸直線一定經(jīng)過樣本中心點(diǎn),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則當(dāng)x∈[-1,1]時(shí),函數(shù)f(x)的值域?yàn)椋ā 。?table class="qanwser">A.[-1,$\frac{\sqrt{2}}{2}$]B.[$\frac{\sqrt{2}}{2}$,1]C.[-$\frac{\sqrt{2}}{2}$,1]D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=$\frac{{e}^{x}}{e}$-ax2+(2a-1)x-a,其中e是自然對(duì)數(shù)的底數(shù).
(Ⅰ)若a=0,求曲線f(x)在x=1處的切線方程;
(Ⅱ)若當(dāng)x≥1時(shí),f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}中,已知a1=1,a2=a,an+1=k(an+an+2)對(duì)任意n∈N*都成立,數(shù)列{an}的前n項(xiàng)和為Sn
(1)若{an}是等差數(shù)列,求k的值;
(2)若a=1,k=-$\frac{1}{2}$,求Sn;
(3)是否存在實(shí)數(shù)k,使數(shù)列{am}是公比不為1的等比數(shù)列,且任意相鄰三項(xiàng)am,am+1,am+2按某順序排列后成等差數(shù)列?若存在,求出所有k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{log_2}(8-x),x≤0\\ f(x-1),x>0\end{array}$則f(3)=(  )
A.3B.2C.log29D.log27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=lnx+a(x-1),其中a∈R.
(Ⅰ) 當(dāng)a=-1時(shí),求證:f(x)≤0;
(Ⅱ) 對(duì)任意t≥e,存在x∈(0,+∞),使tlnt+(t-1)[f(x)+a]>0成立,求a的取值范圍.
(其中e是自然對(duì)數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.過圓錐頂點(diǎn)的平面截去圓錐一部分,所得幾何體的三視圖如圖所示,則原圓推的體積為(  )
A.1B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{8π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若z是復(fù)數(shù),z=$\frac{1-2i}{1+i}$.則z•$\overline{z}$=(  )
A.$\frac{\sqrt{10}}{2}$B.$\frac{\sqrt{5}}{2}$C.1D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知M(-4,0),N(0,-3),P(x,y)的坐標(biāo)x,y滿足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{3x+4y≤12}\end{array}\right.$,則△PMN面積的取值范圍是( 。
A.[12,24]B.[12,25]C.[6,12]D.[6,$\frac{25}{2}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案