分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),計(jì)算f(1),f′(1),求出切線(xiàn)方程即可;
(Ⅱ)求出函數(shù)f′(x)的導(dǎo)數(shù),得到a≤$\frac{1}{2}$時(shí),f′(x)在[1,+∞)遞增,結(jié)合充分必要條件判斷即可.
解答 解:(Ⅰ)a=0時(shí),f(x)=ex-1-x,則f′(x)=ex-1-1,故f′(1)=0,
又f(1)=0,故切線(xiàn)方程是y=0;
(Ⅱ)易知f′(x)=ex-1-2ax+2a-1,f″(x)=ex-1-2a,
若f″(x)≥0,得a≤$\frac{{e}^{x-1}}{2}$,即a≤$\frac{1}{2}$時(shí),f′(x)在[1,+∞)遞增,
故f′(x)≥f′(1)=0,于是f(x)在[1,+∞)遞增,
故f(x)≥f(1)=0,符合題意,
故a≤$\frac{1}{2}$是原不等式成立的充分條件,下面證明必要性,
a>$\frac{1}{2}$時(shí),令f″(x)=0,解得:x=ln(2a)+1,
故x∈(1,ln(2a)+1)時(shí),f′(x)<0,故f′(x)在x∈(1,ln(2a)+1)遞減,
故f′(x)<f′(0)=0,從而x∈(1,ln(2a)+1)時(shí),f(x)遞減,
故f(x)<f(1)=0,與題設(shè)矛盾,不合題意,
綜上,a的范圍是(-∞,$\frac{1}{2}$].
點(diǎn)評(píng) 本題考查了切線(xiàn)方程問(wèn)題,考查函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ±512 | B. | 512 | C. | ±1024 | D. | 1024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
x | 30 | 40 | 50 | 60 |
y | 25 | 30 | 40 | 45 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 回歸直線(xiàn)過(guò)樣本點(diǎn)的中心($\overline{x}$,$\overline{y}$) | |
B. | 兩個(gè)隨機(jī)變量的線(xiàn)性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1 | |
C. | 在回歸直線(xiàn)方程$\stackrel{∧}{y}$=0.2x+0.8中,當(dāng)解釋變量x每增加1個(gè)單位時(shí),預(yù)報(bào)變量$\stackrel{∧}{y}$平均增加0.2個(gè)單位 | |
D. | 對(duì)分類(lèi)變量X與Y,隨機(jī)變量K2的觀測(cè)值k越大,則判斷“X與Y有關(guān)系”的把握程度越小 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com