7.已知F1,F(xiàn)2是橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點,點P是橢圓上一點,△PF1F2是等腰的鈍角三角形,且∠P=30°,則橢圓的離心率為( 。
A.$\frac{\sqrt{2}-1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\sqrt{2}$-1D.$\sqrt{3}$-1

分析 可設(shè)|PF2|=|F1F2|=2c,由橢圓的定義可得|PF1|+|PF2|=2a,可得|PF1|=2a-2c,再由余弦定理,化簡整理,可得a,c的關(guān)系,再由離心率公式計算即可得到所求值.

解答 解:△PF1F2是等腰的鈍角三角形,且∠P=30°,
可設(shè)|PF2|=|F1F2|=2c,
由橢圓的定義可得|PF1|+|PF2|=2a,
可得|PF1|=2a-2c,
由余弦定理可得,cos∠P=$\frac{|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}-|{F}_{1}{F}_{2}{|}^{2}}{2|P{F}_{1}|•|P{F}_{2}|}$,
即有cos30°=$\frac{(2a-2c)^{2}+4{c}^{2}-4{c}^{2}}{2(2a-2c)•2c}$=$\frac{\sqrt{3}}{2}$,
化為a-c=$\sqrt{3}$c,即a=(1+$\sqrt{3}$)c,
可得e=$\frac{c}{a}$=$\frac{1}{1+\sqrt{3}}$=$\frac{\sqrt{3}-1}{2}$.
故選:B.

點評 本題考查橢圓的離心率的求法,注意運用余弦定理和離心率公式,考查化簡整理的圓能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=xlnx+2,g(x)=x2-mx.
(1)求f(x)在點(1,f(1))處的切線方程;
(2)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(3)若存在${x_0}∈[{\frac{1}{e},e}]$使得mf'(x)+g(x)≥2x+m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.復(fù)數(shù)z=($\frac{1+i}{-1+i}$)2016+i3(i為虛數(shù)單位)的共軛復(fù)數(shù)為( 。
A.1+2iB.1+iC.1-iD.1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx-x.
(1)證明:對任意的x1,x2∈(0,+∞),都有|f(x1)|>$\frac{ln{x}_{2}}{{x}_{2}}$;
(2)設(shè)m>n>0,比較$\frac{f(m)+m-(f(n)+n)}{m-n}$與$\frac{m}{{m}^{2}-{n}^{2}}$的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,正三棱柱A′B′C′-ABC中,D為AA′中點,E為BC′上的一點,AB=a,CC′=h
(1)若DE⊥平面BCC′B′,求證:BE=EC′
(2)平面BC′D將棱柱A′B′C′-ABC分割為兩個幾何體,記上面一個幾何體的體積為V1,下面一個幾何體的體積為V2,求V1,V2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)p:實數(shù)x,y滿足x>1且y>1,q:實數(shù)x,y滿足x+y>3,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知拋物線y2=16x,焦點為F,A(8,2)為平面上的一定點,P為拋物線上的一動點,則|PA|+|PF|的最小值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)集合A={x|-1<x<1},集合B={x|0<x<2},則A∩B等于(  )
A.{x|-1<x<0}B.{x|0<x<1}C.{x|1<x<2}D.{x|-1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某小組有3名男生和2名女生,從中任選2名同學(xué)參加演講比賽,那么至多一名女生參加的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{3}{5}$D.$\frac{9}{10}$

查看答案和解析>>

同步練習(xí)冊答案