5.已知$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為150°,|$\overrightarrow{AB}$|=$\sqrt{3}$|$\overrightarrow{AC}$|=$\sqrt{3}$,$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,且$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,則$\frac{λ}{μ}$的值為$\frac{5}{9}$.

分析 先根據(jù)向量的數(shù)量積公式求出$\overrightarrow{AB}$•$\overrightarrow{AC}$,再根據(jù)向量$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,得到(λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$)•($\overrightarrow{AC}$-$\overrightarrow{AB}$)=0,代值化簡整理即可得到答案.

解答 解:∵|$\overrightarrow{AB}$|=$\sqrt{3}$|$\overrightarrow{AC}$|=$\sqrt{3}$,
∴|$\overrightarrow{AC}$|=1,
∵$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為150°,
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|•cos150°=$\sqrt{3}$×1×(-$\frac{\sqrt{3}}{2}$)=-$\frac{3}{2}$
$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,
∴$\overrightarrow{AP}$•$\overrightarrow{BC}$=(λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$)•($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=(λ-μ)$\overrightarrow{AB}$•$\overrightarrow{AC}$-λ${\overrightarrow{AB}}^{2}$+μ${\overrightarrow{AC}}^{2}$=-$\frac{3}{2}$(λ-μ)-3λ+μ=-$\frac{9}{2}$λ+$\frac{5}{2}$μ=0,
∴$\frac{λ}{μ}$=$\frac{5}{9}$,
故答案為:$\frac{5}{9}$

點(diǎn)評(píng) 本題考查兩數(shù)比值的求法,解題時(shí)要認(rèn)真審題,注意向量垂直的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,A=60°,b=1,這個(gè)三角形的面積為$\sqrt{3}$,則sin C的值為( 。
A.$\frac{{\sqrt{3}}}{8}$B.$\frac{{\sqrt{15}}}{8}$C.$\frac{{2\sqrt{39}}}{13}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x-a|+|x+5|.
(1)若a=-1,解不等式:f(x)≥2|x+5|;
(2)若f(x)≥6恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將五個(gè)1,五個(gè)2,五個(gè)3,五個(gè)4,五個(gè)5共25個(gè)數(shù)填入一個(gè)5行5列的表格內(nèi)(每格填入一個(gè)數(shù)),使得同一行中任何兩數(shù)之差的絕對(duì)值不超過2.考察每行中五個(gè)數(shù)之和,記這五個(gè)和的最小值為m,則m的最大值為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知數(shù)列{an}滿足2an+1-an=0,若a2=$\frac{1}{2}$,則數(shù)列{an}的前11項(xiàng)和為( 。
A.256B.$\frac{1023}{4}$C.$\frac{2047}{1024}$D.$\frac{4095}{2048}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知關(guān)于x的不等式ax3+x2+x≤lnx+$\frac{2}{x}$在(0,+∞)上恒成立,則實(shí)數(shù)a的取值范圍是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,∠C=$\frac{π}{4}$,O為外心,且有$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,則m+n的取值范圍是[-$\sqrt{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=|3x+2|.
(1)解不等式f(x)<6-|x-2|;
(2)已知m+n=4(m,n>0),若|x-a|-f(x)≤$\frac{1}{m}$+$\frac{1}{n}$(a>0)恒成立,求函數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)不等式組$\left\{\begin{array}{l}x+y≥0\\ x≤2\\ y≤0\end{array}\right.$表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離大于2的概率是1-$\frac{π}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案