【題目】如圖1,在等腰梯形中,兩腰,底邊,,,的三等分點(diǎn),的中點(diǎn).分別沿,將四邊形折起,使,重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,,分別為,的中點(diǎn).

1)證明:平面.

2)求直線與平面所成角的正弦值.

【答案】1)證明見解析 2

【解析】

(1)先證,再證,由可得平面 ,從而推出平面 ;(2) 建立空間直角坐標(biāo)系,求出平面的法向量與,坐標(biāo)代入線面角的正弦值公式即可得解.

1)證明:連接,,由圖1知,四邊形為菱形,且

所以是正三角形,從而.

同理可證,,

所以平面.

,所以平面,

因?yàn)?/span>平面

所以平面平面.

易知,且的中點(diǎn),所以

所以平面.

2)解:由(1)可知,,且四邊形為正方形.設(shè)的中點(diǎn)為,

為原點(diǎn),以,所在直線分別為,軸,建立空間直角坐標(biāo)系,

,,,,,

所以,,.

設(shè)平面的法向量為,

.

設(shè)直線與平面所成的角為,

所以,

所以直線與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)正四面體的四個(gè)面上分別標(biāo)有1,2,3,4,將該正四面體拋擲兩次,則向下一面的數(shù)字和為偶數(shù)的概率為_________,這兩個(gè)數(shù)字和的數(shù)學(xué)期望為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、的直線與橢圓交于、兩點(diǎn),是以為直角頂點(diǎn)的等腰直角三角形,則橢圓的離心率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面,.

(Ⅰ)求證:平面;

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)若二面角的余弦值為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別是,,是其左右頂點(diǎn),點(diǎn)是橢圓上任一點(diǎn),且的周長(zhǎng)為6,若面積的最大值為.

(1)求橢圓的方程;

(2)若過點(diǎn)且斜率不為0的直線交橢圓,兩個(gè)不同點(diǎn),證明:直線的交點(diǎn)在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國(guó)剩余定理”又稱“孫子定理”,最早可見于中國(guó)南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問題:將120202020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列各項(xiàng)之和為(

A.56383B.57171C.59189D.61242

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)上存在最大值0,求函數(shù)上的最大值;

(3)求證:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形垂直于正方形垂直于平面.且

(1)求三棱錐的體積;

(2)求證:面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線的方程為,以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立直角坐標(biāo),直線的參數(shù)方程為為參數(shù)),交于兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)設(shè)點(diǎn);若、成等比數(shù)列,求的值

查看答案和解析>>

同步練習(xí)冊(cè)答案