分析 (Ⅰ)利用和與差公式打開,根據(jù)二倍角公式和輔助角公式化解為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期,
(Ⅱ)當x∈[$\frac{π}{12}$,$\frac{π}{2}$]時,求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),可求出f(x)的最大值和最小值.
解答 解:(Ⅰ)$f(x)=sin(x-\frac{π}{6})cosx+1=(sinxcos\frac{π}{6}-cosxsin\frac{π}{6})cosx+1$=$\frac{{\sqrt{3}}}{2}sinxcosx-\frac{1}{2}{cos^2}x+1=\frac{{\sqrt{3}}}{4}sin2x-\frac{1}{4}cos2x+\frac{3}{4}$=$\frac{1}{2}(cos\frac{π}{6}sin2x-sin\frac{π}{6}cos2x)+\frac{3}{4}=\frac{1}{2}sin(2x-\frac{π}{6})+\frac{3}{4}$,
∴函數(shù)f(x)的最小正周期$T=\frac{2π}{2}=π$.
(Ⅱ)由(Ⅰ)知$f(x)=\frac{1}{2}sin(2x-\frac{π}{6})+\frac{3}{4}$,
∵$x∈[\frac{π}{12},\frac{π}{2}]$,
∴$2x-\frac{π}{6}∈[0,\frac{5π}{6}]$,
∴$sin(2x-\frac{π}{6})∈[0,1]$,
故當$x=\frac{π}{3}$時,函數(shù)f(x)的最大值為$\frac{5}{4}$.
當$x=\frac{π}{12}$時,函數(shù)f(x)的最小值為$\frac{3}{4}$.
點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運用,利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關鍵.屬于中檔題
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
同一限定區(qū)域停車 | 不同一限定區(qū)域停車 | 合計 | |
男 | 5 | ||
女 | 10 | ||
合計 | 50 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 函數(shù)f(x)=x2(x∈R)存在1級“理想?yún)^(qū)間” | |
B. | 函數(shù)f(x)=ex(x∈R)不存在2級“理想?yún)^(qū)間” | |
C. | 函數(shù)f(x)=$\frac{4x}{{x}^{2}+1}$(x≥0)存在3級“理想?yún)^(qū)間” | |
D. | 函數(shù)f(x)=tanx,x∈(-$\frac{π}{2}$,$\frac{π}{2}$)不存在4級“理想?yún)^(qū)間” |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 5 | C. | 2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com