12.某學(xué)校為了制定治理學(xué)校門口上學(xué),放學(xué)期間家長(zhǎng)接送孩子亂停車現(xiàn)象的措施,對(duì)全校學(xué)生家長(zhǎng)進(jìn)行了問卷調(diào)查,得到了如下的列聯(lián)表(單位:人)
同一限定區(qū)域停車不同一限定區(qū)域停車合計(jì)
5
10
合計(jì)50
已知在抽取的50分調(diào)查問卷中速記抽取一份,抽到不同意限定區(qū)域停車問卷的概率為$\frac{2}{5}$.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握恩威是否同意限定區(qū)域停車與家長(zhǎng)的性別有關(guān)?請(qǐng)說明理由.
附臨界表及參考公式:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

分析 (1)根據(jù)在抽取的50分調(diào)查問卷中速記抽取一份,抽到不同意限定區(qū)域停車問卷的概率為$\frac{2}{5}$,可得不同意限定區(qū)域停車的人數(shù),即可得到列聯(lián)表;
(2)利用公式求得K2,與臨界值比較,即可得到結(jié)論.

解答 解:(1)2×2列聯(lián)表

同一限定區(qū)域停車不同一限定區(qū)域停車合計(jì)
20525
101525
合計(jì)302050
(2)因?yàn)镵2=$\frac{50(20×15-5×10)^{2}}{25×25×30×20}$≈8.333
又 P(k2≥7.789)=0.005=0.5%.…(11分)
所以,我們有99.5%的把握恩威是否同意限定區(qū)域停車與家長(zhǎng)的性別有關(guān).

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn)知識(shí),考查學(xué)生的計(jì)算能力,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若求O的半徑為4,且球心O到平面α的距離為$\sqrt{3}$,則平面α截球O所得截面圓的面積為( 。
A.πB.10πC.13πD.52π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.事件A,B是相互獨(dú)立的,P(A)=0.4,P(B)=0.3,下列四個(gè)式子:①P(AB)=0.12;②P($\overline{A}$B)=0.18;③P(A$\overline{B}$)=0.28;④P($\overline{A}$$\overline{B}$)=0.42.其中正確的有( 。
A.4個(gè)B.2個(gè)C.3個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知α是第四象限角,tanα=-$\frac{5}{12}$,則sinα=( 。
A.$\frac{1}{5}$B.$\frac{5}{13}$C.$-\frac{5}{13}$D.$-\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=cos2x+$\sqrt{3}$sinxcosx.
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)求f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在數(shù)列{an}中,已知a1+a2+…+an=2n-1,則a12+a22+…+an2=$\frac{1}{3}$(4n-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=sin(x-$\frac{π}{6}$)cosx+1.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)當(dāng)x∈[$\frac{π}{12}$,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)$f(x)=\frac{(4x+a)lnx}{3x+1}$,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+y+1=0垂直.
(Ⅰ)求a的值;
(Ⅱ)若對(duì)于任意的x∈[1,e],f(x)≤mx恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.?dāng)?shù)列{an}中,a1=2,an+1=an+c•2n(c是常數(shù),n=1,2,3…),且a1,a2,a3成公比不為1的等比數(shù)列.
(Ⅰ)求c的值;
(Ⅱ)求{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案