14.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,則z=2x+y的最大值為( 。
A.-5B.1C.$\frac{5}{2}$D.3

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,即可求最大值.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分),
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過(guò)點(diǎn)A時(shí),直線y=-2x+z的截距最大,
此時(shí)z最大.
由,解得$\left\{\begin{array}{l}{x-2y=0}\\{x+2y-2=0}\end{array}\right.$,解得A(1,$\frac{1}{2}$),
代入目標(biāo)函數(shù)z=2x+y得z=2×1+$\frac{1}{2}$=$\frac{5}{2}$.
即目標(biāo)函數(shù)z=2x+y的最大值為$\frac{5}{2}$.
故選:C.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問(wèn)題的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.正數(shù)a,b滿足等式2a+3b=6,則$\frac{2}{a}+\frac{3}$的最小值為( 。
A.$\frac{25}{6}$B.$\frac{8}{3}$C.$\frac{11}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.點(diǎn)P(1,2)到直線x-2y+5=0的距離為(  )
A.$\frac{1}{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.下列4個(gè)命題:
①“若a、G、b成等比數(shù)列,則G2=ab”的逆命題;
②“如果x2+x-6≥0,則x>2”的否命題;
③在△ABC中,“若A>B”則“sinA>sinB”的逆否命題;
④當(dāng)0≤α≤π時(shí),若8x2-(8sinα)x+cos2α≥0對(duì)?x∈R恒成立,則α的取值范圍是0≤α≤$\frac{π}{6}$.
其中真命題的序號(hào)是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知無(wú)窮等差數(shù)列{an}中,它的前n項(xiàng)和Sn,且S7>S6,S7>S8那么( 。
A.{an}中a7最大B.{an}中a3或a4最大C.當(dāng)n≥8時(shí),an<0D.一定有S3=S11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知{an}是等差數(shù)列,Sn為其前n項(xiàng)和,若a6=5,S4=12a4,則公差d的值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(1)已知a,b是正實(shí)數(shù),求證:$\frac{a}{\sqrt}+\frac{\sqrt{a}}$≥$\sqrt{a}+\sqrt$.
(2)已知:A,B都是銳角,且A+B≠90°,(1+tanA)(1+tanB)=2,求證:A+B=45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)f(x)是定義在R上的增函數(shù),且對(duì)任意x,都有f(-x)+f(x)=0恒成立,如果實(shí)數(shù)m,n滿足不等式f(m2-6m+21)+f(n2-8n)<0,則m2+n2的取值范圍是( 。
A.(9,25)B.(3,7)C.(9,49)D.(13,49)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.使命題p:?x0∈R+,x0ln x0+x02-ax0+2<0成立為假命題的一個(gè)充分不必要條件為( 。
A.a∈(0,3)B.a∈(-∞,3]C.a∈(3,+∞)D.a∈[3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案