分析 作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,利用數(shù)形結合即可得到結論
解答 解:作出不等式組對應的平面區(qū)域如圖:(陰影部分).
由z=-x+2y得y=$\frac{1}{2}$x+$\frac{1}{2}$z,
平移直線y=$\frac{1}{2}$x+$\frac{1}{2}$z,
由圖象可知當直線y=$\frac{1}{2}$x+$\frac{1}{2}$z,經過點A(2,4)時,直線y=$\frac{1}{2}$x+$\frac{1}{2}$z,的截距最大,
此時z最大.
代入目標函數(shù)z=-x+2y得z=-2+2×4=6.
即目標函數(shù)z=2x+y的最大值為6.
故答案為:6.
點評 本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結合數(shù)形結合的數(shù)學思想是解決此類問題的基本方法.屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 4 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 18種 | B. | 24種 | C. | 48種 | D. | 36種 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com