20.高考結(jié)束后高三的8名同學(xué)準備拼車去旅游,其中一班、二班、三班、四班每班各兩名,分乘甲、乙兩輛汽車,每車限坐4名同學(xué)(乘同一輛車的4名同學(xué)不考慮位置,)其中一班兩位同學(xué)是孿生姐妹,需乘同一輛車,則乘坐甲車的4名同學(xué)中恰有2名同學(xué)是來自同一班的乘坐方式共有( 。
A.18種B.24種C.48種D.36種

分析 分類討論,第一類,一班的2名同學(xué)在甲車上;第二類,一班的2名同學(xué)不在甲車上,再利用組合知識,問題得以解決.

解答 解:由題意,第一類,一班的2名同學(xué)在甲車上,甲車上剩下兩個要來自不同的班級,從三個班級中選兩個為C32=3,然后分別從選擇的班級中再選擇一個學(xué)生為C21C21=4,故有3×4=12種.
第二類,一班的2名同學(xué)不在甲車上,則從剩下的3個班級中選擇一個班級的兩名同學(xué)在甲車上,為C31=3,然后再從剩下的兩個班級中分別選擇一人為C21C21=4,這時共有3×4=12種,
根據(jù)分類計數(shù)原理得,共有12+12=24種不同的乘車方式,
故選:B.

點評 本題考查計數(shù)原理的應(yīng)用,考查組合知識,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知x,y滿足約束條件$\left\{{\begin{array}{l}{x-y+2≥0}\\{x+2y-2≥0}\\{x≤2}\end{array}}\right.$,則目標函數(shù)z=-x+2y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=ax3-3x2+1,若f(-a)、f(a)、f(3a)成公差不為0的等差數(shù)列,則過坐標原點作曲線y=f(x)的切線可以作( 。
A.0條B.1條C.2條D.3條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow$=(-sinθ,0),$\overrightarrow{c}$=(cosθ,-1),且(2$\overrightarrow{a}$-$\overrightarrow$)∥$\overrightarrow{c}$,則tanθ等于-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x+1|-|x-3|.
(Ⅰ)畫出函數(shù)f(x)的圖象;
(Ⅱ)若不等式f(x)≥$\frac{|3m+1|-|1-m|}{|m+1|}$對任意實數(shù)m≠-1,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=x3-3x+2+m(m>0),在區(qū)間[0,2]上存在三個不同的實數(shù)a,b,c,使得以f(a),f(b),f(c)為邊長的三角形是直角三角形,則m的取值范圍是0<m<4+4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若α為銳角,sinα-mcosα=a(m>0),則msinα+cosα=$\sqrt{{m}^{2}+1{-a}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在等腰梯形ABCD中,已知AB∥DC,AB=2CD=4.若$\overrightarrow{AC}$•$\overrightarrow{BD}$=-1,則$\overrightarrow{AD}$•$\overrightarrow{BC}$=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,若P為三角形A1B1C1
內(nèi)一點(不含邊界),則點P在底面ABC的投影可能在( 。
A.△ABC的內(nèi)部B.△ABC的外部C.直線AB上D.以上均有可能

查看答案和解析>>

同步練習(xí)冊答案