8.已知扇形的圓心角是72°,半徑為20cm,則扇形的面積為( 。
A.70πcm2B.70 cm2C.80cm2D.80πcm2

分析 根據(jù)扇形的面積公式,在公式中代入圓心角和半徑,約分化簡(jiǎn)得到最簡(jiǎn)結(jié)果.

解答 解:由題意知扇形的圓心角是72°,半徑為20cm,
∴扇形的面積是S=$\frac{72}{360}•π•2{0}^{2}$=80πcm2,
故選C.

點(diǎn)評(píng) 本題考查扇形的面積公式,是一個(gè)基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知點(diǎn) F 是拋物線 y2=4x的焦點(diǎn),M、N 是該拋物線上兩點(diǎn),|MF|+|NF|=6,則 MN中點(diǎn)的橫坐標(biāo)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)點(diǎn)P圓C:x2+y2=1上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到直線x+$\sqrt{3}$y-4=0的距離最小值為( 。
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}滿(mǎn)足:${a_1}=2,{a_{n+1}}={a_n}^2-k{a_n}+k({k∈{N^*}}),{a_1},{a_2},{a_3}$分別是公差不為零的等差數(shù)列{bn}的前三項(xiàng).
(1)求k的值;
(2)求證:對(duì)任意的n∈N*,bn,b2n,b4n不可能是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.記sin(-80°)=k,那么tan100°=( 。
A.$\frac{{\sqrt{1-{k^2}}}}{k}$B.$-\frac{{\sqrt{1-{k^2}}}}{k}$C.$\frac{k}{{\sqrt{1-{k^2}}}}$D.$-\frac{k}{{\sqrt{1-{k^2}}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,$cosC=\frac{3}{10}$.
(1)若$\overrightarrow{CA}•\overrightarrow{CB}=\frac{9}{2}$,求△ABC的面積;
(2)設(shè)向量$\overrightarrow x=(2sinB,-\sqrt{3})$,$\overrightarrow y=(cos2B,1-2{sin^2}\frac{B}{2})$,且$\overrightarrow x∥\overrightarrow y$,求角B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知$f(α)=\frac{{sin({π+α})cos({2π-α})tan({-α})}}{{tan({-π-α})cos({\frac{3π}{2}+α})}}$.
(1)化簡(jiǎn)f(α);
(2)當(dāng)$α=-\frac{31π}{3}$時(shí),求f(α)的值;
(3)若α是第三象限的角,且$sinα=-\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列函數(shù)中,在其定義域內(nèi)是增函數(shù)而且又是奇函數(shù)的是( 。
A.$y=x+\frac{1}{x}$B.y=2x-2-xC.y=log2|x|D.y=2x+2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知f(x)的定義域是(0,+∞),f'(x)是f(x)的導(dǎo)數(shù),且滿(mǎn)足f(x)>f'(x),則不等式ex+2•f(x2-x)>ex2•f(2)的解集是(-1,0)∪(1,2).

查看答案和解析>>

同步練習(xí)冊(cè)答案