11.圓C1:x2+y2+2ax+a2-9=0和圓C2:x2+y2-4by-1+4b2=0只有一條公切線,若a∈R,b∈R,且ab≠0,則$\frac{4}{a^2}+\frac{1}{b^2}$的最小值為4.

分析 由題意可得兩圓相內(nèi)切,根據(jù)兩圓的標準方程求出圓心和半徑,可得a2+4b2=4,再利用“1”的代換,使用基本不等式求得$\frac{4}{a^2}+\frac{1}{b^2}$的最小值.

解答 解:由題意可得兩圓相內(nèi)切,兩圓的標準方程分別為 (x+a)2+y2=9,x2+(y-2b)2=1,
圓心分別為(-a,0),(0,2b),半徑分別為3和1,故有$\sqrt{{a}^{2}+4^{2}}$=2,∴a2+4b2=4,
∴$\frac{4}{a^2}+\frac{1}{b^2}$=$\frac{1}{4}$($\frac{4}{a^2}+\frac{1}{b^2}$)(a2+4b2)=$\frac{1}{4}$(8+$\frac{16^{2}}{{a}^{2}}$+$\frac{{a}^{2}}{^{2}}$)≥4,
當且僅當$\frac{16^{2}}{{a}^{2}}$=$\frac{{a}^{2}}{^{2}}$時,等號成立,
∴$\frac{4}{a^2}+\frac{1}{b^2}$的最小值為4.
故答案為:4.

點評 本題考查兩圓的位置關(guān)系,兩圓相內(nèi)切的性質(zhì),圓的標準方程的特征,基本不等式的應用,得到a2+4b2=4是解題的關(guān)鍵和難點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知等差數(shù)列{an}的前n項和Sn=n2-(t+1)n+t,則數(shù)列{an}的通項公式an=2n-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.函數(shù)$y=sinx+\sqrt{3}cosx$的圖象可由函數(shù)$y=sinx-\sqrt{3}cosx$的圖象至少向左平移$\frac{2π}{3}$個單位長度得到.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=sin(ωx+φ)(φ>0)的圖象關(guān)于直線x=-1和x=2對稱,則f(0)的取值集合是( 。
A.{-1,1,-$\frac{1}{2}$}B.{1,-$\frac{1}{2}$,$\frac{1}{2}$}C.{-1,1,-$\frac{1}{2}$,$\frac{1}{2}$}D.{-1,1,-2,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知向量$\overrightarrow a,\overrightarrow b$滿足$|\overrightarrow a|=1$,$|\overrightarrow a+\overrightarrow b|=\sqrt{7}$,$\overrightarrow a•(\overrightarrow b-\overrightarrow a)=-4$,則$\overrightarrow a$與$\overrightarrow b$夾角是(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知$\frac{\overline z}{1+2i}=2+i$,則復數(shù)z+5的實部與虛部的和為(  )
A.10B.-10C.0D.-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,六面體ABCDE中,面DBC⊥面ABC,AE⊥面ABC.
(Ⅰ)求證:AE∥面DBC;
(Ⅱ)若AB⊥BC,BD⊥CD,求證:面ADB⊥面EDC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.某十字路口的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)的時間為60秒,小明放學回家途經(jīng)該路口遇到紅燈,則小明至少要等15秒才能出現(xiàn)綠燈的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若函數(shù)f(x)=(x-1)(x+2)(x2+ax+b)的圖象關(guān)于直線x=0對稱,則f(x)的最小值為( 。
A.-$\frac{25}{4}$B.$\frac{7}{4}$C.-$\frac{9}{4}$D.$\frac{41}{4}$

查看答案和解析>>

同步練習冊答案