分析 (I)過點D作DO⊥BC,O為垂足,則由面面垂直的性質(zhì)得出DO⊥平面ABC,于是AE∥DO,從而得出AE∥面DBC;
(II)由面面垂直的性質(zhì)可得AB⊥平面BCD,故AB⊥CD,結(jié)合BD⊥CD可得CD⊥平面ABD,從而得出面ADB⊥面EDC.
解答 證明:(Ⅰ)過點D作DO⊥BC,O為垂足,
∵面DBC⊥面ABC,面DBC∩面ABC=BC,DO?面DBC,
∴DO⊥面ABC,
又AE⊥面ABC,
∴AE∥DO,
又AE?面DBC,DO?面DBC,
∴AE∥面DBC.
(Ⅱ)∵面DBC⊥面ABC,面DBC∩面ABC=BC,AB⊥BC,
∴AB⊥面DBC,
又DC?面DBC,
∴AB⊥DC,
又BD⊥CD,AB∩BD=B,AB、BD?面ADB,
∴DC⊥面ADB,
又DC?面EDC,
∴面ADB⊥面EDC.
點評 本題考查了面面垂直的性質(zhì)與判定,線面垂直的性質(zhì),屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -8 | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -7 | B. | -6 | C. | -5 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $5-2\sqrt{5}$ | B. | $5+2\sqrt{5}$ | C. | $\sqrt{3}+1$ | D. | $\sqrt{3}-1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $16\sqrt{3}-\frac{16π}{3}$ | B. | $\frac{{16\sqrt{3}-16π}}{3}$ | C. | $8\sqrt{3}-\frac{8π}{3}$ | D. | $\frac{{8\sqrt{3}-8π}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com