分析 (Ⅰ)求得f(x)的導(dǎo)數(shù),可得切線的斜率,由條件可得a的方程,解方程可得a的值;
(Ⅱ)求出g(x)的導(dǎo)數(shù),可得單調(diào)區(qū)間和極值,且為最值;
(Ⅲ)顯然g(x)=f'(x),且g(0)=0,運用零點存在定理可得g(x)的零點范圍,可設(shè)g(x)=f'(x)存在兩個零點,分別為0,x0.討論x<0時,0<x<x0時,x>x0時,g(x)的符號,可得f(x)的極值,進而得到f(x)在(-∞,0)上單調(diào)遞增,即可得證.
解答 解:(Ⅰ)函數(shù)f(x)=ex-x2+ax的導(dǎo)數(shù)為:
f′(x)=ex-2x+a,
由已知可得f′(0)=0,所以1+a=0,得a=-1.
(Ⅱ)g'(x)=ex-2,令g'(x)=0,得x=ln2,
所以x,g'(x),g(x)的變化情況如表所示:
x | (-∞,ln2) | ln2 | (ln2,+∞) |
g'(x) | - | 0 | + |
g(x) | 遞減 | 極小值 | 遞增 |
點評 本題考查導(dǎo)數(shù)的運用:求切線的斜率和單調(diào)區(qū)間、極值和最值,考查函數(shù)零點存在定理的運用,以及轉(zhuǎn)化思想,考查化簡整理的運算能力,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | -3 | C. | -2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\sqrt{6}$ | C. | $2\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com