12.F1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{7}$=1的左、右焦點(diǎn),P為雙曲線C右支上一點(diǎn),且|PF1|=8,則$\frac{|F{{\;}_{1}F}_{2}|}{|P{F}_{2}|}$=(  )
A.4B.3C.2$\sqrt{2}$D.2

分析 根據(jù)題意,由雙曲線的標(biāo)準(zhǔn)方程可得a、b的值,計(jì)算可得c的值,即可得|F1F2|的值;進(jìn)而由雙曲線的定義可得|PF1|-|PF2|=2a=6,由|PF1|的值,可得|PF2|的值,將|F1F2|、|PF2|的值代入$\frac{|F{{\;}_{1}F}_{2}|}{|P{F}_{2}|}$中計(jì)算可得答案.

解答 解:根據(jù)題意,雙曲線C的方程為:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{7}$=1,其中a=$\sqrt{9}$=3,b=$\sqrt{7}$,
則c=$\sqrt{{a}^{2}+^{2}}$=4,
則|F1F2|=2c=8,
P為雙曲線C右支上一點(diǎn),則有|PF1|-|PF2|=2a=6,
又由|PF1|=8,則|PF2|=8-6=2,
則$\frac{|F{{\;}_{1}F}_{2}|}{|P{F}_{2}|}$=$\frac{8}{2}$=4;
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的定義以及幾何性質(zhì),注意P在雙曲線的右支上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=x-1-mlnx(m∈R),f(x)≥0恒成立,則m的值為(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=4-2t}\\{y=t-2}\end{array}\right.$(t為參數(shù)),P是橢圓$\frac{{x}^{2}}{4}$+y2=1上任意一點(diǎn),則點(diǎn)P到直線l的距離的最大值為( 。
A.$\frac{2\sqrt{5}}{5}$B.$\frac{2\sqrt{10}}{5}$C.2D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=sin2x-cos2x.
(Ⅰ)求證:f($\frac{7}{4}$π-x)=f(x);
(Ⅱ)若對(duì)任意的x∈[0,$\frac{π}{4}$],使得$\frac{f(x)+2}{k}-1=0$有解,求實(shí)數(shù)k的取值范圍;
(Ⅲ)若x∈(0,$\frac{5π}{8}$)時(shí),函數(shù)g(x)=f2(x)-2mf(x)+1有四個(gè)不同零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.過(guò)長(zhǎng)方體的一個(gè)頂點(diǎn)的三條棱長(zhǎng)分別是1、2、2,且它的八個(gè)頂點(diǎn)都在同一球面上,則這個(gè)球的表面積是9π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在底面為矩形的四棱錐P-ABCD中,PB⊥AB.
(1)證明:平面PBC⊥平面PCD;
(2)若PB=AB=$\frac{4}{3}$BC=4,平面PAB⊥平面ABCD,求三棱錐A-PBD與三棱錐P-BCD的表面積之差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.我國(guó)古代名著《莊子•天下篇》中有一句名言“一尺之棰,日取其半,萬(wàn)世不竭”,其意思為:一尺的木棍,每天截取一半,永遠(yuǎn)都截不完.現(xiàn)將該木棍依此規(guī)律截取,如圖所示的程序框圖的功能就是計(jì)算截取7天后所剩木棍的長(zhǎng)度(單位:尺),則①②③處可分別填入的是( 。
  ① ② ③
 A i≤7? s=s-$\frac{1}{i}$ i=i+1
 B i≤128? s=s-$\frac{1}{i}$ i=2i
 Ci≤7? s=s-$\frac{1}{2i}$ i=i+1
 D i≤128? s=s-$\frac{1}{2i}$ i=2i
A.AB.BC.CD.D

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.我們把形如y=f(x)φ(x)的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)數(shù)法:在函數(shù)解析式兩邊求對(duì)數(shù)得ln y=φ(x)lnf(x),兩邊求導(dǎo)得$\frac{y′}{y}$=φ′(x)•ln f(x)+φ(x)•$\frac{f′(x)}{f(x)}$,于是y′=f(x)φ(x)[φ′(x)•ln f(x)+φ(x)•$\frac{f′(x)}{f(x)}$].運(yùn)用此方法可以探求得y=x${\;}^{\frac{1}{x}}$的單調(diào)遞增區(qū)間是(0,e).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知數(shù)列{an}滿足$\frac{2{a}_{n}-3}{{a}_{n-1}+1}$=2(n≥2),且a2=1,則a8=16.

查看答案和解析>>

同步練習(xí)冊(cè)答案