14.函數(shù)y=$\frac{x^2}{{{2^x}-{2^{-x}}}}$的圖象可能是(  )
A..B..
C..D.

分析 根據(jù)奇偶性和函數(shù)值的變化趨勢(shì)即可判斷.

解答 解:∵f(-x)=$\frac{{x}^{2}}{{2}^{-x}-{2}^{x}}$=-$\frac{x^2}{{{2^x}-{2^{-x}}}}$=-f(x),
∴y=f(x)為奇函數(shù),
則其圖象關(guān)于原點(diǎn)對(duì)稱,故排除B,D,
當(dāng)x→+∞時(shí),2-x→0,且2x遠(yuǎn)遠(yuǎn)大于x2,
∴y=$\frac{x^2}{{{2^x}-{2^{-x}}}}$→0,故排除A,
故選:C.

點(diǎn)評(píng) 本題考查了函數(shù)圖象的識(shí)別,關(guān)鍵是掌握函數(shù)的奇偶性和函數(shù)值的變化趨勢(shì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{{e}^{2x}-1}{x}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若任意x∈(0,1),f(x)∈(a,b)恒成立,求b-a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}-1({x≤1})\\|{x-3}|-1({x>1})\end{array}$,則不等式f(x)<-$\frac{1}{2}$的解集為$\left\{{x|x<-1或\frac{5}{2}<x<\frac{7}{2}}\right\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.甲,乙兩同學(xué)在高三上學(xué)期的6次聯(lián)考測(cè)試中的物理成績(jī)的莖葉圖如圖所示,則關(guān)于甲,乙兩同學(xué)的成績(jī)分析正確的是( 。
A.甲,乙兩同學(xué)測(cè)試成績(jī)的中位數(shù)相同
B.甲,乙兩同學(xué)測(cè)試成績(jī)的眾數(shù)相同
C.甲,乙兩同學(xué)測(cè)試成績(jī)的平均數(shù)不相同
D.甲同學(xué)測(cè)試成績(jī)的標(biāo)準(zhǔn)差比乙同學(xué)測(cè)試成績(jī)的標(biāo)準(zhǔn)差大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{5}{6}$B.$\frac{10}{3}$C.$\frac{7}{3}$D.$\frac{17}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,AB=2,AD=3,PA=$\sqrt{3}$,點(diǎn)E為棱CD上一點(diǎn),則三棱錐E-PAB的體積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)y=4sin(2x+$\frac{π}{6}$)(0≤x≤$\frac{7π}{6}$)取到最小值時(shí)x值為$\frac{2π}{3}$;其圖象與一條平行于x軸的直線y=m有三個(gè)交點(diǎn),則實(shí)數(shù)m取值范圍為[2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且2S3-3S2=12,則數(shù)列{an}的公差是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.集合A={1,2,3,4},B={3,4,5,6},則圖中陰影部分表示的集合為( 。
A.B.{1,2}C.{3,4}D.{5,6}

查看答案和解析>>

同步練習(xí)冊(cè)答案