19.四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,AB=2,AD=3,PA=$\sqrt{3}$,點E為棱CD上一點,則三棱錐E-PAB的體積為$\sqrt{3}$.

分析 由PA⊥平面ABCD可得VE-PAB=VP-ABE=$\frac{1}{3}{S}_{△ABE}•PA$.

解答 解∵底面ABCD是矩形,E在CD上,
∴S△ABE=$\frac{1}{2}AB•AD$=$\frac{1}{2}×2×3$=3.
∵PA⊥底面ABCD,
∴VE-PAB=VP-ABE=$\frac{1}{3}{S}_{△ABE}•PA$=$\frac{1}{3}×3×\sqrt{3}=\sqrt{3}$.
故答案為:$\sqrt{3}$.

點評 本題考查了棱錐的體積計算,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知拋物線C:y2=2px(p>0)的焦點為F,P為C上一點,若|PF|=4,點P到y(tǒng)軸的距離等于等于3,則點F的坐標為( 。
A.(-1,0)B.(1,0)C.(2,0)D.(-2,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.直線y=kx+1與拋物線y2=2x至多有一個公共點,則k的取值范圍{0}∪[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.隨著手機和電腦的普及,人們收到垃圾短信也越來越多,小明在某社區(qū)進行垃圾短信問卷調查,從中隨機抽取10人,在一個月內接到的垃圾短信條數(shù)統(tǒng)計的莖葉圖如圖所示:
(1)計算樣本的平均數(shù)及方差;
(2)現(xiàn)從10人中隨機抽出2名進一步調查,設選出者每月接到的垃圾短信在10條以下的人數(shù)為X,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)y=$\frac{x^2}{{{2^x}-{2^{-x}}}}$的圖象可能是( 。
A..B..
C..D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知數(shù)列{an}首項為2,且對任意n∈N*,都有$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{n}{{a}_{1}{a}_{n+1}}$,數(shù)列{an}的前10項和為110.
(Ⅰ)求證:數(shù)列{an}為等差數(shù)列;
(Ⅱ)若存在n∈N*,使得an≤(n+1)λ成立,求實數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知等差數(shù)列{an}的公差d∈(0,1),cos(a5-2d)-cos(a5+2d)=2sin$\frac{{{a_3}+{a_7}}}{2}$,且sina5≠0,當且僅當n=10時,數(shù)列{an}的前n項和Sn取得最小值,則首項a1的取值范圍是$({-\frac{5π}{2},-\frac{9π}{4}})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.將編號為1,2,3的三個小球隨機放入編號為1,2,3的三個盒子(每個盒子中均有球),則編號為2的球不在編號為2的盒子中的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.數(shù)列{an}的前n項和為Sn,且Sn+an=1(n∈N+).
(1)求數(shù)列{an}的通項公式;
(2)設bn=(-1)n•($\frac{1}{a^n}$-1),求數(shù)列{bn}前n項和Tn

查看答案和解析>>

同步練習冊答案