【題目】如圖,在四棱錐中,底面是直角梯形,,是正三角形,,的中點(diǎn).

(1)證明:;

(2)求直線(xiàn)與平面所成角的正弦值.

【答案】(1)見(jiàn)證明;(2)

【解析】

(1)設(shè)的中點(diǎn),連接,先證明是平行四邊形,再證明平面,即

2)以為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸的正方向,建空間直角坐標(biāo)系,分別計(jì)算各個(gè)點(diǎn)坐標(biāo),計(jì)算平面法向量,利用向量的夾角公式得到直線(xiàn)與平面所成角的正弦值.

(1)證明:設(shè)的中點(diǎn),連接,

的中點(diǎn),,

, ,

是平行四邊形,,

,,

,,,

由余弦定理得,

,,

,平面,

;

(2)由(1)得平面,,平面平面,

過(guò)點(diǎn),垂足為平面,以為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸的正方向,建立如圖的空間直角坐標(biāo)系

,,

,

設(shè)是平面的一個(gè)法向量,則,

,則,

,

直線(xiàn)與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直角三角形ABC的三個(gè)頂點(diǎn)都在橢圓上,其中A0,1)為直角頂點(diǎn).若該三角形的面積的最大值為,則實(shí)數(shù)a的值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)在區(qū)間上存在零點(diǎn),則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若,求處的切線(xiàn)方程;

(2)若對(duì)于任意的正數(shù)恒成立,求實(shí)數(shù)的值;

(3)若函數(shù)存在兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為4的正方形中,點(diǎn)EF分別為邊的中點(diǎn),以為折痕把折起,使點(diǎn)B、D重合于點(diǎn)P位置,連結(jié),得到如圖所示的四棱錐.

1)在線(xiàn)段上是否存在一點(diǎn)G,使與平面平行,若存在,求的值;若不存在,請(qǐng)說(shuō)明理由

2)求點(diǎn)A到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,點(diǎn)是曲線(xiàn)上的動(dòng)點(diǎn),點(diǎn)的延長(zhǎng)線(xiàn)上,且,點(diǎn)的軌跡為

(1)求直線(xiàn)及曲線(xiàn)的極坐標(biāo)方程;

(2)若射線(xiàn)與直線(xiàn)交于點(diǎn),與曲線(xiàn)交于點(diǎn)(與原點(diǎn)不重合),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“總把新桃換舊符”(王安石)、“燈前小草寫(xiě)桃符”(陸游),春節(jié)是中華民族的傳統(tǒng)節(jié)日,在宋代人們用寫(xiě)“桃符”的方式來(lái)祈福避禍,而現(xiàn)代人們通過(guò)貼“!弊帧①N春聯(lián)、掛燈籠等方式來(lái)表達(dá)對(duì)新年的美好祝愿,某商家在春節(jié)前開(kāi)展商品促銷(xiāo)活動(dòng),顧客凡購(gòu)物金額滿(mǎn)50元,則可以從“福”字、春聯(lián)和燈籠這三類(lèi)禮品中任意免費(fèi)領(lǐng)取一件,若有4名顧客都領(lǐng)取一件禮品,則他們中有且僅有2人領(lǐng)取的禮品種類(lèi)相同的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定橢圓C:(),稱(chēng)圓心在原點(diǎn)O,半徑為的圓是橢圓C的“衛(wèi)星圓”.若橢圓C的離心率,點(diǎn)C上.

(1)求橢圓C的方程和其“衛(wèi)星圓”方程;

(2)點(diǎn)P是橢圓C的“衛(wèi)星圓”上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線(xiàn),使得,與橢圓C都只有一個(gè)交點(diǎn),且,分別交其“衛(wèi)星圓”于點(diǎn)M,N,證明:弦長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是我國(guó)2008年至2014年生活垃圾無(wú)害化處理量(單位:億噸)的折線(xiàn)圖.

Ⅰ)由折線(xiàn)圖看出,可用線(xiàn)性回歸模型擬合yt的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;

Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國(guó)生活垃圾無(wú)害化處理量.

附注:

參考數(shù)據(jù):,,

,≈2.646.

參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

同步練習(xí)冊(cè)答案