18.某幾何體的三視圖如圖所示,則其體積為( 。
A.80B.160C.240D.480

分析 利用三視圖判斷幾何體的形狀,利用三視圖的數(shù)據(jù),求解幾何體的體積即可.

解答 解:由三視圖可知,該幾何體是由一個三棱柱截去一個三棱錐得到的,三棱柱的底面是直角三角形,兩直角邊邊長為6和8,三棱柱的高為10,三棱錐的底面是直角三角形,兩直角邊為6和8,三棱錐的高為10,所以幾何體的體積V=$\frac{1}{2}$×$6×8×10-\frac{1}{2}×6×8×10×\frac{1}{3}$=160,
故選:B.

點評 本題考查三視圖求解幾何體的體積,考查空間想象能力以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=Asin(ωx+φ)+B (A>0,ω>0,|φ|<$\frac{π}{2}$)的最大值為2$\sqrt{2}$,最小值為-$\sqrt{2}$,周期為π,且圖象過(0,-$\frac{\sqrt{2}}{4}$).
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知某個幾何體的三視圖如圖所示,圖中每個小正方形的邊長為1,則該幾何體的表面積為( 。
A.4+4$\sqrt{2}$B.8+4$\sqrt{2}$C.8+2$\sqrt{3}$D.8+4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.甲乙丙三人一起參加機(jī)動車駕駛證科目考三試后,與丁相聚,丁詢問甲乙丙的考試結(jié)果,甲說:“我通過了.”,乙說:“我和甲都通過了.”,丙說:“我和乙都通過了.”甲乙丙三人有且只有一個人說的內(nèi)容與考試結(jié)果不完全相同,甲乙丙中沒有通過的是丙.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.給出下列命題:
①若命題P為:$\frac{1}{x-1}>0$,則¬P:$\frac{1}{x-1}≤0$;
②若sin α+cos α=$\frac{1}{2}$,則sin2α=-$\frac{3}{4}$.
③設(shè)α,β是兩個不同的平面,m是直線且m?α.則“m∥β”是“α∥β”的必要不充分條件
④定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),則方程f(x)=0在[0,4]上至少有三個根.
其中正確命題有②③④(填上所有正確命題的編號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.閱讀程序框圖,運行相應(yīng)的程序,則輸出的T值為( 。
A.22B.24C.39D.41

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x+3y-6≥0}\\{3x+2y-9≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x-y的最大值是( 。
A.-2B.2C.-6D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某鋼廠打算租用A,B兩種型號的火車車皮運輸900噸鋼材,A,B兩種車皮的載貨量分別為36噸和60噸,租金分別為1.6萬元/個和2.4元/個,鋼廠要求租車皮總數(shù)不超過21個,且B型車皮不多于A型車皮7個,分別用x,y表示租用A,B兩種車皮的個數(shù).
(Ⅰ)用x,y列出滿足條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)分別租用A,B兩種車皮的個數(shù)是多少,才能使得租金最少?并求出此最小租金.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某幾何體的三視圖如圖所示,則其體積為( 。
A.207B.$216-\frac{9π}{2}$C.216-36πD.216-18π

查看答案和解析>>

同步練習(xí)冊答案