8.設(shè)函數(shù)$f(x)=2x+\frac{1}{x}-1(x>0)$,則f(x)( 。
A.有最小值B.有最大值C.是增函數(shù)D.是減函數(shù)

分析 利用基本不等式的性質(zhì)即可得出.

解答 解:∵x>0,
∴函數(shù)f(x)=2x+$\frac{1}{x}$-1≥2$\sqrt{2x•\frac{1}{x}}$-1=2$\sqrt{2}$-1,當(dāng)且僅當(dāng)x=$\frac{\sqrt{2}}{2}$時(shí)取等號(hào),
∴f(x)有最小值,無(wú)最大值,
故選:A

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)$f(x)=\sqrt{3}({{{sin}^2}x-{{cos}^2}x})-2sinxcosx$.
(1)求f(x)的最小正周期;
(2)設(shè)$x∈[{-\frac{π}{3}\;,\;\;\frac{π}{3}}]$,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)全集U=R,集合A={x|1≤x≤3},則∁UA={x|x<1或x>3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知a=log30.2,b=30.2,c=0.30.2,則a,b,c三者的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)$f(x)={({\frac{1}{3}})^x}$.
(1)若g(x)為f(x)的反函數(shù),且g(mx2+2x+1)的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈[-1,1]時(shí),求函數(shù)y=[f(x)]2-2af(x)+3的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,ABCD為正方形,PD⊥平面AC,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明:PA∥平面EDB;
(2)證明:PB⊥平面EFD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.△ABC中,若sin(A+B)sin(A-B)=sin2C,則△ABC是( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=ln($\frac{1}{2}$+$\frac{1}{2}$ax)+x2-ax(a為常數(shù),a>0).
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意的a∈(1,2),總存在x0∈[$\frac{1}{2}$,1],使不等式f(x0)>m(a2+2a-3)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,已知銳角△ABC的面積為1,正方形DEFG是△ABC的一個(gè)內(nèi)接三角形,
DG∥BC,求正方形DEFG面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案