5.已知函數(shù)f(x)=cos4x+2sinxcosx-sin4x
(1)求函數(shù)f(x)奇偶性、最小正周期和單調(diào)遞增區(qū)間
(2)當(dāng)$x∈[{0\;,\;\;\frac{π}{2}}]$時,求函數(shù)f(x)的最大值和最小值.

分析 (1)先根據(jù)三角函數(shù)的二倍角公式化簡為f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),從而求出函數(shù)的最小正周期;判定奇偶性、結(jié)合正弦函數(shù)的單調(diào)性解不等式,從而求出函數(shù)的單調(diào)區(qū)間即可.
(2)先根據(jù)x的范圍確定2x+$\frac{π}{4}$的范圍,再由正弦函數(shù)的性質(zhì)可求出最值.

解答 解:(1)f(x)=(cos2x+sin2x)(cos2x-sin2x)=cos2x+sin2x=)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
∴f(x)的最小正周期T=$\frac{2π}{2}=π$;∵f(-x)≠f(x)≠-f(x),f(x)是非奇非偶函數(shù);
由-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{4}$≤2kπ$\frac{π}{2}$,k∈Z得-$\frac{3π}{8}$+kπ≤x$≤kπ+\frac{π}{8}$,k∈Z
∴f(x)的單調(diào)遞增區(qū)間是[-$\frac{3π}{8}$+kπ,kπ+$\frac{π}{8}$](k∈Z);
(2)當(dāng)$x∈[{0\;,\;\;\frac{π}{2}}]$時,2x+$\frac{π}{4}∈[\frac{π}{4},\frac{5π}{4}]$,
結(jié)合正弦函數(shù)圖象可得,sin(2x+$\frac{π}{4}$)$∈[-\frac{\sqrt{2}}{2},1]$,
∴函數(shù)f(x)的最大值和最小值分別為$\sqrt{2}$,-1.

點評 本題考查了三角函數(shù)的恒等變換,函數(shù)的周期性、奇偶性,考查函數(shù)的單調(diào)性問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.“a,b都是偶數(shù)”是“a+b是偶數(shù)”的充分不必要條件.(從“充分必要”,“充分不必要”,“必要不分”,“既不充分也不必要”中選擇適當(dāng)?shù)奶顚懀?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2A-3cos(B+C)=1.
(1)求角A的大。
(2)若△ABC的面積$S=5\sqrt{3}$,b=5,求sinBsinC的值;
(3)若a=1,求△ABC的周長l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.角α的終邊上有一點P(-3,4),則sinα值為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.k∈Z,下列各組角的表示中,終邊相同的角是(  )
A.$\frac{kπ}{2}$與$kπ±\frac{π}{2}$B.2kπ+π與4kπ±πC.$kπ+\frac{π}{6}$與$2kπ±\frac{π}{6}$D.$\frac{kπ}{3}$與$kπ+\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知α是第三象限角,且$sin({α-\frac{7}{2}π})=-\frac{1}{5}$,則$\frac{{sin({π-α})cos({2π-α})tan({-α+\frac{3}{2}π})}}{{cot({-α-3π})sin({-\frac{π}{2}-α})}}$=$-\frac{2\sqrt{6}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$cos({arcsina})=\frac{{\sqrt{3}}}{2}$,$tan({arccosb})=-\sqrt{3}$,且$\frac{sinx}{1-cosx}=a+b$,則角x=( 。
A.$x=2kπ-\frac{π}{2}$,k∈ZB.$x=2kπ+\frac{π}{2}$,k∈ZC.x=2kπ,k∈ZD.x=2kπ+π,k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)={log_a}\frac{x-2}{x+2}$的定義域為[m,n],值域為[logaa(n-1),logaa(m-1)],且f(x)在[m,n]上為減函數(shù).(常數(shù)a>0,且a≠1)
(1)求證m>2
(2)求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對于a>0,a≠1,下列結(jié)論中
(1)am+an=am+n
(2)${({a^m})^n}={a^{m^n}}$
(3)若M=N,則logaM=logaN
(4)若${log_a}{M^2}={log_a}{N^2}$,
則M=N正確的結(jié)論有( 。
A.3個B.2個C.1個D.0個

查看答案和解析>>

同步練習(xí)冊答案