【題目】如圖,已知正三棱柱ABC=A1B1C1的各棱長都是4EBC的中點,動點F在側(cè)棱CC1上,且不與點C重合.

1)當CF=1時,求證:EF⊥A1C;

2)設(shè)二面角C﹣AF﹣E的大小為θ,求tanθ的最小值.

【答案】1)見解析 (2

【解析】

1)過EEN⊥ACN,連接EF,NF,AC1,由直棱柱的性質(zhì)可知,底面ABC⊥側(cè)面A1C

∴EN⊥側(cè)面A1C

NFEF在側(cè)面A1C內(nèi)的射影

在直角三角形CNF中,CN=1

則由,得NF∥AC1,又AC1⊥A1C,故NF⊥A1C

由三垂線定理可知EF⊥A1C

2)連接AF,過NNM⊥AFM,連接ME

由(1)可知EN⊥側(cè)面A1C,根據(jù)三垂線定理得EM⊥AF

∴∠EMN是二面角C﹣AF﹣E的平面角即∠EMN=θ

設(shè)∠FAC=αα≤45°

在直角三角形CNE中,NE=,在直角三角形AMN中,MN=3sinα

tanθ=,又α≤45°∴0sinα≤

故當α=45°時,tanθ達到最小值,

tanθ=,此時FC1重合

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,以原點為極點,軸為極軸建立極坐標系,曲線的方程為為參數(shù)),曲線的極坐標方程為,若曲線相交于、兩點.

(1)求的值;

(2)求點兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在抽取彩票雙色球中獎號碼時,有33個紅色球,每個球的編號分別為0102,,33.一位彩民用隨機數(shù)表法選取6個號碼作為6個紅色球的編號,選取方法是從下面的隨機數(shù)表中第1行第6列的數(shù)字3開始,從左向右讀數(shù),則依次選出的第3個紅色球的編號為(

49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64

57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

A.21B.32C.09D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標原點,焦點在軸上,離心率為,橢圓上的點到焦點距離的最大值為.

1)求橢圓的標準方程;

2)斜率為的直線與橢圓交于不同的兩點,且線段的中垂線交軸于點,求點橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),對于,都有,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)當時,求不等式的解集;

(2)若不等式的解集為空集,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年北京冬季奧運會,普及冬奧知識,某校開展了冰雪答題王冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學(xué)生中隨機抽取了100名學(xué)生,將他們的比賽成績(滿分為100分)分為6組:,,,,得到如圖所示的頻率分布直方圖.

1)求的值;

2)估計這100名學(xué)生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);

3)在抽取的100名學(xué)生中,規(guī)定:比賽成績不低于80分為優(yōu)秀,比賽成績低于80分為非優(yōu)秀.請將下面的2×2列聯(lián)表補充完整,并判斷是否有99.9%的把握認為比賽成績是否優(yōu)秀與性別有關(guān)?

優(yōu)秀

非優(yōu)秀

合計

男生

40

女生

50

合計

100

參考公式及數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】今年入冬以來,我市天氣反復(fù).在下圖中統(tǒng)計了我市上個月前15天的氣溫,以及相對去年同期的氣溫差(今年氣溫-去年氣溫,單位:攝氏度),以下判斷錯誤的是(

A.今年每天氣溫都比去年氣溫低B.今年的氣溫的平均值比去年低

C.今年8-12號氣溫持續(xù)上升D.今年8號氣溫最低

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標系,直線過點,且傾斜角為,以為極點,軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為.

(1)求直線的參數(shù)方程和圓的標準方程;

(2)設(shè)直線與圓交于、兩點,若,求直線的傾斜角的值.

查看答案和解析>>

同步練習(xí)冊答案