11.從集合{1,2,3,4}中任取兩個不同的數(shù),則這兩個數(shù)的和為3的倍數(shù)的槪率為$\frac{1}{3}$.

分析 先求出基本事件總數(shù)n=${C}_{4}^{2}$=6,再利用列舉法求出這兩個數(shù)的和為3的倍數(shù)包含的基本事件個數(shù),由此能求出這兩個數(shù)的和為3的倍數(shù)的槪率.

解答 解:從集合{1,2,3,4}中任取兩個不同的數(shù),
基本事件總數(shù)n=${C}_{4}^{2}$=6,
這兩個數(shù)的和為3的倍數(shù)包含的基本事件有:(1,2),(2,4),共2個,
∴這兩個數(shù)的和為3的倍數(shù)的槪率p=$\frac{2}{6}=\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意列舉法的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=$\sqrt{\frac{2-x}{3+x}}+ln({{3^x}-\frac{1}{3}})$的定義域為M.
(1)求M;
(2)當x∈M時,求$g(x)={4^{x+\frac{1}{2}}}-{2^{x+2}}$+1的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設f(x)=xex,g(x)=$\frac{1}{2}$x2+x.
(1)令F(x)=f(x)+g(x),求F(x)的最小值;
(2)若任意x1,x2∈[-1,+∞)且x1>x2有m[f(x1)-f(x2)]>g(x1)-g(x2)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.定義在R上的函數(shù)f(x)滿足f(x+2)=$\frac{1}{2}$f(x),當x∈[0,2]時,f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-2x,0≤x<1}\\{{-2}^{1-|x-\frac{3}{2}|,1≤x<2}}\end{array}\right.$,函數(shù)g(x)=x3+3x2+m.若對任意s∈[-4,-2),存在t∈[-4,-2),不等式f(s)-g(t)≥0成立,則實數(shù)m的取值范圍是( 。
A.(-∞,-12]B.(-∞,14]C.(-∞,-8]D.(-∞,$\frac{31}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.從裝有2個紅球和2個黑球的口袋內任取2個球,則與事件恰有兩個紅球既不對立也不互斥的事件是( 。
A.至少有一個黑球B.恰好一個黑球C.至多有一個紅球D.至少有一個紅球

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知當x=θ時,函數(shù)f(x)=2sinx-cosx取得最大值,則sin(2θ+$\frac{π}{4}$)=( 。
A.$\frac{7\sqrt{2}}{10}$B.$\frac{\sqrt{2}}{10}$C.-$\frac{\sqrt{2}}{10}$D.-$\frac{7\sqrt{2}}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在幾何體A1B1D1-ABCD中,四邊形A1B1BA與A1D1DA均為直角梯形,且AA1⊥底面ABCD,四邊形ABCD為正方形,AB=2A1D1=2A1B1=4,AA1=4,P為DD1的中點.
(Ⅰ)求證:AB1⊥PC;
(Ⅱ)求幾何體A1B1D1-ABCD的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知直線a,b和平面α,β,給出以下命題,其中真命題為(  )
A.若a∥β,α∥β,則a∥αB.若α∥β,a?α,則a∥β
C.若α∥β,a?α,b?β,則a∥bD.若a∥β,b∥α,α∥β,則a∥b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.命題“存在x∈(0,+∞),使得lnx>x-2”的否定是( 。
A.對任意x∈(0,+∞),都有l(wèi)nx<x-2B.對任意x∈(0,+∞),都有l(wèi)nx≤x-2
C.存在x∈(0,+∞),使得lnx<x-2D.存在x∈(0,+∞),使得lnx≤x-2

查看答案和解析>>

同步練習冊答案