16.如圖,四棱錐D-ABCM中,AD=DM,且AD⊥DM,底面四邊形ABCM是直角梯形,AB⊥BC,MC⊥BC,且AB=2BC=2CM=4,平面AMD⊥平面ABCM.
(Ⅰ)求證:AD⊥BD
(Ⅱ)若點(diǎn)E是線段DB上的一動(dòng)點(diǎn),問點(diǎn)E在何位置時(shí),四棱錐M-ADE的體積為$\frac{4\sqrt{2}}{9}$?

分析 (Ⅰ)推導(dǎo)出AM⊥BM,從而BM⊥平面DAM,由此能證明AD⊥BD.
(Ⅱ)由BM⊥平面ADM,BM=2$\sqrt{2}$,由VM-ADE=VE-ADM,能求出E為BD的三等分點(diǎn)時(shí),四棱錐M-ADE的體積為$\frac{4\sqrt{2}}{9}$.

解答 證明:(Ⅰ)∵四邊形ABCM是直角梯形,AB⊥BC,MC⊥BC,
AB=2BC=2MC=4,
∴BM=AM=2$\sqrt{2}$,
∴BM2+AM2=AB2,即AM⊥BM,
∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,
BM?平面ABCM,
∴BM⊥平面DAM,又DA?平面DAM,
∴AD⊥BD.
解:(Ⅱ)由(Ⅰ)知BM⊥平面ADM,BM=2$\sqrt{2}$,
設(shè)$\frac{DE}{BD}=λ$,則E到平面ADM的距離d=2$\sqrt{2}$λ,
∵△ADM是等腰直角三角形,AD⊥DM,AM=2$\sqrt{2}$,
∴AD=DM=2,
∴VM-ADE=VE-ADM=$\frac{1}{3}{S}_{△AMD}•d$=$\frac{4\sqrt{2}}{9}$,
即$\frac{1}{3}×\frac{1}{2}×2×2×2\sqrt{2}λ=\frac{4\sqrt{2}}{9}$,
解得$λ=\frac{1}{3}$,
∴E為BD的三等分點(diǎn).

點(diǎn)評(píng) 本題考查線線垂直的證明,考查滿足條件的點(diǎn)的位置的確定及求法,考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知φ∈($\frac{π}{2}$,π),且sinφ=$\frac{3}{5}$,若函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象的相鄰兩條對(duì)稱軸之間的距離等于$\frac{π}{2}$,則f($\frac{π}{4}$)的值為( 。
A.-$\frac{3}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在極坐標(biāo)系中,點(diǎn)(2,$\frac{π}{3}$)到圓ρ=-2cosθ的圓心的距離為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.f(x)=ex-ax2-(a+1)x-1,a∈R,(e為自然對(duì)數(shù)的底數(shù))
(1)a=0時(shí),求f(x)的極值;
(2)若?x0∈[0,1],使得f′(x)≥b成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.《九章算術(shù)》商功章有云:今有圓困,高一丈三尺三寸、少半寸,容米二千斛,問周幾何?即一圓柱形谷倉(cāng),高1丈3尺$3\frac{1}{3}$寸,容納米2000斛(1丈=10尺,1尺=10寸,斛為容積單位,1斛≈1.62立方尺,π≈3),則圓柱底面圓的周長(zhǎng)約為( 。
A.1丈3尺B.5丈4尺C.9丈2尺D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=2sin(2x+$\frac{π}{3}$+φ)(|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{2}$個(gè)單位后關(guān)于y軸對(duì)稱,則以下判斷不正確的是( 。
A.$f({x+\frac{π}{4}})$是奇函數(shù)B.$({\frac{π}{4},0})$為f(x)的一個(gè)對(duì)稱中心
C.f(x)在$({-\frac{3π}{4},-\frac{π}{4}})$上單調(diào)遞增D.f(x)在(0,$\frac{π}{2}$)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若集合A={-1,2},B={0,1},則集合{z|z=x+y,x∈A,y∈B}的子集共有( 。
A.2個(gè)B.4個(gè)C.8個(gè)D.16個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知數(shù)列{an}為等差數(shù)列,若a12+a102≤25恒成立,則a1+3a7的取值范圍為( 。
A.[-5,5]B.[-5$\sqrt{2}$,5$\sqrt{2}$]C.[-10,10]D.[-10$\sqrt{2}$,10$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,過橢圓C:$\frac{{x}^{2}}{4}$+y2=1的左右焦點(diǎn)F1,F(xiàn)2分別作直線l1,l2交橢圓于A,B與C,D,且l1∥l2
(1)求證:當(dāng)直線l1的斜率k1與直線BC的斜率k2都存在時(shí),k1k2為定值;
(2)求四邊形ABCD面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案