【題目】如圖,有一塊半圓形空地,開發(fā)商計(jì)劃建造一個(gè)矩形游泳池及左右兩側(cè)兩個(gè)大小相同的矩形休息區(qū),其中半圓的圓心為,半徑為,矩形的一邊上,矩形的一邊上,點(diǎn)在圓周上,在直徑上,且,設(shè).若每平方米游泳池的造價(jià)和休息區(qū)造價(jià)分別為.

1)記游泳池及休息區(qū)的總造價(jià)為,求的表達(dá)式;

2)為進(jìn)行投資預(yù)算,當(dāng)為何值時(shí),總造價(jià)最大?并求出總造價(jià)的最大值.

【答案】12,最大值為

【解析】

1)用三角函數(shù)表示的長度,進(jìn)而分別表示游泳池和休息區(qū)的面積,由分別的面積乘以單價(jià)再相加即可表示總造價(jià)

2)對(duì)(1)中求導(dǎo)并因式分解,令,解得,分析單調(diào)性

上單調(diào)遞增,在上單調(diào)遞減,即在時(shí),求得最大值.

1)由圖可知在矩形中,

所以,.

在矩形中,,

所以,

因?yàn)橛斡境孛科椒矫椎脑靸r(jià)為,休息區(qū)每平方米造價(jià)為

所以,

2)由(1)得,

,

因?yàn)?/span>,所以.

,解得.因?yàn)?/span>,所以.

列表如下:

0

極大值

所以,當(dāng)時(shí),總造價(jià)取得極大值,即最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的右焦點(diǎn)為,且短軸長為,離心率為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)點(diǎn)為橢圓軸正半軸的交點(diǎn),是否存在直線,使得交橢圓兩點(diǎn),且恰是的垂心?若存在,求的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在以AB為直徑的圓上運(yùn)動(dòng),PA⊥平面ABC,且PAAC,DE分別是PC,PB的中點(diǎn).

1)求證:PC⊥平面ADE

2)若二面角CAEB60°,求直線AB與平面ADE所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某公園內(nèi)有一塊矩形綠地區(qū)域ABCD,已知AB=100米,BC=80米,以AD,BC為直徑的兩個(gè)半圓內(nèi)種植花草,其它區(qū)域種值苗木. 現(xiàn)決定在綠地區(qū)域內(nèi)修建由直路BN,MN和弧形路MD三部分組成的觀賞道路,其中直路MN與綠地區(qū)域邊界AB平行,直路為水泥路面,其工程造價(jià)為每米2a元,弧形路為鵝卵石路面,其工程造價(jià)為每米3a元,修建的總造價(jià)為W元. 設(shè).

(1)求W關(guān)于的函數(shù)關(guān)系式;

(2)如何修建道路,可使修建的總造價(jià)最少?并求最少總造價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在南北方向有一條公路,一半徑為100的圓形廣場(圓心為)與此公路所在直線相切于點(diǎn),點(diǎn)為北半圓。ɑ)上的一點(diǎn),過點(diǎn)作直線的垂線,垂足為,計(jì)劃在內(nèi)(圖中陰影部分)進(jìn)行綠化,設(shè)的面積為(單位:),

1)設(shè),將表示為的函數(shù);

2)確定點(diǎn)的位置,使綠化面積最大,并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:

(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;

(2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時(shí)間超過和不超過的工人數(shù)填入下面的列聯(lián)表:

超過

不超過

第一種生產(chǎn)方式

第二種生產(chǎn)方式

(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究所開發(fā)了一種新藥,測得成人注射該藥后血藥濃度y(微克/毫升)與給藥時(shí)間x(小時(shí))之間的若干組數(shù)據(jù),并由此得出yx之間的一個(gè)擬合函數(shù)y400.6x0.62x)(x[0,12]),其簡圖如圖所示.試根據(jù)此擬合函數(shù)解決下列問題:

1)求藥峰濃度與藥峰時(shí)間(精確到0.01小時(shí)),并指出血藥濃度隨時(shí)間的變化趨勢;

2)求血藥濃度的半衰期(血藥濃度從藥峰濃度降到其一半所需要的時(shí)間)(精確到0.01小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】基于移動(dòng)網(wǎng)絡(luò)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國,給人們帶來新的出行體驗(yàn),某共享單車運(yùn)營公司的市場研究人員為了了解公司的經(jīng)營狀況,對(duì)公司最近6個(gè)月的市場占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代碼

1

2

3

4

5

6

11

13

16

15

20

21

(1)請(qǐng)用相關(guān)系數(shù)說明能否用線性回歸模型擬合與月份代碼之間的關(guān)系.如果能,請(qǐng)計(jì)算出關(guān)于的線性回歸方程,如果不能,請(qǐng)說明理由;

(2)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車擴(kuò)大市場,從成本1000元/輛的型車和800元/輛的型車中選購一種,兩款單車使用壽命頻數(shù)如下表:

車型 報(bào)廢年限

1年

2年

3年

4年

總計(jì)

10

30

40

20

100

15

40

35

10

100

經(jīng)測算,平均每輛單車每年能為公司帶來500元的收入,不考慮除采購成本以外的其它成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,用頻率估計(jì)每輛車使用壽命的概率,以平均每輛單車所產(chǎn)生的利潤的估計(jì)值為決策依據(jù),如果你是公司負(fù)責(zé)人,會(huì)選擇哪款車型?

參考數(shù)據(jù):,,.

參考公式:相關(guān)系數(shù),,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:ab0)的兩個(gè)焦點(diǎn)分別為F1(-,0)、F2,0.點(diǎn)M10)與橢圓短軸的兩個(gè)端點(diǎn)的連線相互垂直.

1)求橢圓C的方程;

2)已知點(diǎn)N的坐標(biāo)為(32),點(diǎn)P的坐標(biāo)為(mn)(m≠3.過點(diǎn)M任作直線l與橢圓C相交于A、B兩點(diǎn),設(shè)直線ANNP、BN的斜率分別為k1k2、k3,若k1k32k2,試求mn滿足的關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案