【題目】如圖,有一塊半圓形空地,開發(fā)商計(jì)劃建造一個(gè)矩形游泳池及左右兩側(cè)兩個(gè)大小相同的矩形休息區(qū),其中半圓的圓心為,半徑為,矩形的一邊在上,矩形的一邊在上,點(diǎn)在圓周上,在直徑上,且,設(shè).若每平方米游泳池的造價(jià)和休息區(qū)造價(jià)分別為和.
(1)記游泳池及休息區(qū)的總造價(jià)為,求的表達(dá)式;
(2)為進(jìn)行投資預(yù)算,當(dāng)為何值時(shí),總造價(jià)最大?并求出總造價(jià)的最大值.
【答案】(1)(2),最大值為
【解析】
(1)用三角函數(shù)表示和的長度,進(jìn)而分別表示游泳池和休息區(qū)的面積,由分別的面積乘以單價(jià)再相加即可表示總造價(jià);
(2)對(duì)(1)中求導(dǎo)并因式分解,令,解得,分析單調(diào)性在
上單調(diào)遞增,在上單調(diào)遞減,即在時(shí),求得最大值.
(1)由圖可知在矩形中,,
所以,.
在矩形中,,
所以,
因?yàn)橛斡境孛科椒矫椎脑靸r(jià)為,休息區(qū)每平方米造價(jià)為
所以,
(2)由(1)得,
,
因?yàn)?/span>,所以.
令,解得.因?yàn)?/span>,所以.
列表如下:
0 | |||
極大值 |
所以,當(dāng)時(shí),總造價(jià)取得極大值,即最大值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的右焦點(diǎn)為,且短軸長為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)為橢圓與軸正半軸的交點(diǎn),是否存在直線,使得交橢圓于兩點(diǎn),且恰是的垂心?若存在,求的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在以AB為直徑的圓上運(yùn)動(dòng),PA⊥平面ABC,且PA=AC,D,E分別是PC,PB的中點(diǎn).
(1)求證:PC⊥平面ADE.
(2)若二面角C﹣AE﹣B為60°,求直線AB與平面ADE所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某公園內(nèi)有一塊矩形綠地區(qū)域ABCD,已知AB=100米,BC=80米,以AD,BC為直徑的兩個(gè)半圓內(nèi)種植花草,其它區(qū)域種值苗木. 現(xiàn)決定在綠地區(qū)域內(nèi)修建由直路BN,MN和弧形路MD三部分組成的觀賞道路,其中直路MN與綠地區(qū)域邊界AB平行,直路為水泥路面,其工程造價(jià)為每米2a元,弧形路為鵝卵石路面,其工程造價(jià)為每米3a元,修建的總造價(jià)為W元. 設(shè).
(1)求W關(guān)于的函數(shù)關(guān)系式;
(2)如何修建道路,可使修建的總造價(jià)最少?并求最少總造價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在南北方向有一條公路,一半徑為100的圓形廣場(圓心為)與此公路所在直線相切于點(diǎn),點(diǎn)為北半圓。ɑ)上的一點(diǎn),過點(diǎn)作直線的垂線,垂足為,計(jì)劃在內(nèi)(圖中陰影部分)進(jìn)行綠化,設(shè)的面積為(單位:),
(1)設(shè),將表示為的函數(shù);
(2)確定點(diǎn)的位置,使綠化面積最大,并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;
(2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時(shí)間超過和不超過的工人數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
第一種生產(chǎn)方式 | ||
第二種生產(chǎn)方式 |
(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究所開發(fā)了一種新藥,測得成人注射該藥后血藥濃度y(微克/毫升)與給藥時(shí)間x(小時(shí))之間的若干組數(shù)據(jù),并由此得出y與x之間的一個(gè)擬合函數(shù)y=40(0.6x﹣0.62x)(x∈[0,12]),其簡圖如圖所示.試根據(jù)此擬合函數(shù)解決下列問題:
(1)求藥峰濃度與藥峰時(shí)間(精確到0.01小時(shí)),并指出血藥濃度隨時(shí)間的變化趨勢;
(2)求血藥濃度的半衰期(血藥濃度從藥峰濃度降到其一半所需要的時(shí)間)(精確到0.01小時(shí)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】基于移動(dòng)網(wǎng)絡(luò)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國,給人們帶來新的出行體驗(yàn),某共享單車運(yùn)營公司的市場研究人員為了了解公司的經(jīng)營狀況,對(duì)公司最近6個(gè)月的市場占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:
月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
11 | 13 | 16 | 15 | 20 | 21 |
(1)請(qǐng)用相關(guān)系數(shù)說明能否用線性回歸模型擬合與月份代碼之間的關(guān)系.如果能,請(qǐng)計(jì)算出關(guān)于的線性回歸方程,如果不能,請(qǐng)說明理由;
(2)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車擴(kuò)大市場,從成本1000元/輛的型車和800元/輛的型車中選購一種,兩款單車使用壽命頻數(shù)如下表:
車型 報(bào)廢年限 | 1年 | 2年 | 3年 | 4年 | 總計(jì) |
10 | 30 | 40 | 20 | 100 | |
15 | 40 | 35 | 10 | 100 |
經(jīng)測算,平均每輛單車每年能為公司帶來500元的收入,不考慮除采購成本以外的其它成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,用頻率估計(jì)每輛車使用壽命的概率,以平均每輛單車所產(chǎn)生的利潤的估計(jì)值為決策依據(jù),如果你是公司負(fù)責(zé)人,會(huì)選擇哪款車型?
參考數(shù)據(jù):,,,.
參考公式:相關(guān)系數(shù),,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(-,0)、F2(,0).點(diǎn)M(1,0)與橢圓短軸的兩個(gè)端點(diǎn)的連線相互垂直.
(1)求橢圓C的方程;
(2)已知點(diǎn)N的坐標(biāo)為(3,2),點(diǎn)P的坐標(biāo)為(m,n)(m≠3).過點(diǎn)M任作直線l與橢圓C相交于A、B兩點(diǎn),設(shè)直線AN、NP、BN的斜率分別為k1、k2、k3,若k1+k3=2k2,試求m,n滿足的關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com