5.已知函數(shù)f(x)=2cos(ωx+φ)(ω>0)是奇函數(shù),其圖象與直線y=-2的交點(diǎn)間的最小距離是π,則( 。
A.ω=2,φ=$\frac{π}{2}$B.ω=2,φ=πC.ω=$\frac{1}{2}$,φ=$\frac{π}{2}$D.ω=$\frac{1}{2}$,φ=$\frac{π}{4}$

分析 利用余弦函數(shù)的奇偶性和周期性,求得φ和ω的值,從而得出結(jié)論.

解答 解:∵函數(shù)f(x)=2cos(ωx+φ)(ω>0)是奇函數(shù),∴φ=kπ+$\frac{π}{2}$,k∈Z.
根據(jù)f(x)的圖象與直線y=-2的交點(diǎn)間的最小距離是π,可得它的周期為$\frac{2π}{ω}$=π,∴ω=2,
故選:A.

點(diǎn)評(píng) 本題主要考查余弦函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.邊長(zhǎng)為4的正三角形ABC中,點(diǎn)D在邊AB上,$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{DB}$,M是BC的中點(diǎn),則$\overrightarrow{AM}$•$\overrightarrow{CD}$=( 。
A.16B.$12\sqrt{3}$C.$-8\sqrt{3}$D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖(1),五邊形ABCDE中,ED=EA,AB∥CD,CD=2AB,∠EDC=150°.如圖(2),將△EAD沿AD折到△PAD的位置,得到四棱錐P-ABCD.點(diǎn)M為線段PC的中點(diǎn),且BM⊥平面PCD.

(1)求證:平面PAD⊥平面ABCD;
(2)若直線PC與AB所成角的正切值為$\frac{1}{2}$,求直線BM與平面PDB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若x,y滿足$\left\{\begin{array}{l}{x+y≤4}\\{y-2x+2≤0}\\{y≥0}\end{array}\right.$,當(dāng)n=x+2y取最大值時(shí),${({x-\frac{2}{{\sqrt{x}}}})^n}$的常數(shù)項(xiàng)為( 。
A.240B.-240C.60D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若x,y滿足$\left\{\begin{array}{l}{x+y≤4}\\{y-2x+2≤0}\\{y≥0}\end{array}\right.$,若z=x+2y,則z的最大值是(  )
A.1B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知f(x)=sin$\frac{π}{3}$(x+1)-$\sqrt{3}$cos$\frac{π}{3}$(x+1),則f(1)+f(2)+…+f(2016)+f(2017)=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若f(x)是定義在R上的函數(shù),對(duì)任意的實(shí)數(shù)x,都有f(x+3)≥f(x)+3和f(x+2)≤f(x)+2,且f(1)=1,則f(2 017)的值為2017.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知數(shù)列{an}是等差數(shù)列,a5+a6=8,則數(shù)列{an}的前10項(xiàng)和為( 。
A.40B.35C.20D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,內(nèi)角 A,B,C所對(duì)的邊分別為a,b,c,且滿足b2+c2-a2=2bcsin(B+C).
(1)求角 A的大;
(2)若$a=2,B=\frac{π}{3}$,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案