3.在等比數(shù)列{an}中,a5-a1=15,a4-a2=6,則a3=( 。
A.-4B.4C.-4或4D.-8或8

分析 先假設(shè)公比,根據(jù)條件,列出方程,求得等比數(shù)列的首項(xiàng)與公比,再利用等比數(shù)列的通項(xiàng)求a3的值.

解答 解:設(shè)等比數(shù)列的公比為q,則
∵a5-a1=15,a4-a2=6,
∴a1q4-a1=15,a1q3-a1q=6,
∴q2+1=$\frac{5}{2}$q
∴q=2或q=$\frac{1}{2}$,
∴a1=1或a1=-16
∴a3=±4
故選C.

點(diǎn)評 本題重點(diǎn)考查等比數(shù)列的通項(xiàng),解題的關(guān)鍵是構(gòu)建方程組,求出等比數(shù)列的首項(xiàng)與公比.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家研究過各種多邊形數(shù).如三角形數(shù)1,3,6,10,第n個(gè)三角形數(shù)為$\frac{n(n+1)}{2}$=$\frac{1}{2}$n2+$\frac{1}{2}$n,記第n個(gè)k邊形數(shù)為N(n,k)(k≥3),以下列出了部分k邊形中第n個(gè)數(shù)的表達(dá)式:
三角形數(shù)N(n,3)=$\frac{1}{2}$n2+$\frac{1}{2}$n
正方形數(shù)N(n,4)=n2,
五邊形數(shù)N(n,5)=$\frac{3}{2}$n2-$\frac{1}{2}$n,
六邊形數(shù)N(n,6)=2n2-n,
據(jù)此可推測N(n,k)的表達(dá)式,由此計(jì)算N(8,22)=(  )
A.284B.568C.1136D.2272

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.以下四個(gè)命題:
①對立事件一定是互斥事件;
②函數(shù)y=x+$\frac{1}{x}$的最小值為2;
③八位二進(jìn)制數(shù)能表示的最大十進(jìn)制數(shù)為256;
④在△ABC中,若a=80,b=150,A=30°,則該三角形有兩解.
其中正確命題的個(gè)數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若兩個(gè)正實(shí)數(shù)x,y滿足$\frac{1}{x}$+$\frac{1}{y}$=1,則x+2y的取值范圍是[3+2$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=ax2+(b-2)x+3(a≠0).
(1)若不等式f(x)>0的解集為(-1,3),求a,b的值;
(2)若f(1)=3,a>0,b>0,求$\frac{1}{a}+\frac{4}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.判斷函數(shù)f(x)=3x+($\frac{1}{3}$)x的奇偶性,它是偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,A=$\frac{π}{6}$,AB=2,AC=3,點(diǎn)M在BC上且滿足$\overrightarrow{CM}$=2$\overrightarrow{MB}$,則$\overrightarrow{AM}$$•\overrightarrow{BC}$=( 。
A.$\frac{1}{3}$+$\sqrt{3}$B.$\frac{1}{3}$-$\sqrt{3}$C.$\frac{11}{3}$+$\sqrt{3}$D.$\frac{11}{3}$-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=(1+cos2x)sin2x的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.菜農(nóng)定期使用低害殺蟲農(nóng)藥對蔬菜進(jìn)行噴灑,以防止害蟲的危害,但采集上市時(shí)蔬菜仍有少量的殘留農(nóng)藥,食用時(shí)需要用清水清洗干凈.如表是用清水x(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥y(單位:微克)的統(tǒng)計(jì)表:
x12345
y5854392910
(1)令ω=x2,利用給出的參考數(shù)據(jù)求出y關(guān)于ω的回歸方程$\widehat{y}$=$\widehat$ω+$\widehat{a}$($\widehat{a}$,$\widehat$精確到0.1).
參考數(shù)據(jù):$\sum_{i=1}^{5}$ωi=55,$\sum_{i=1}^{5}$(ωi-$\overline{ω}$)(yi-$\overline{y}$)=-751,$\sum_{i=1}^{5}$(ωi-$\overline{ω}$)2=374.其中ωi=x${\;}_{i}^{2}$,$\overline{ω}$=$\frac{1}{5}$$\sum_{i=1}^{5}$ωi
(2)對于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量不高于20微克時(shí)對人體無害,為了放心食用該蔬菜,請估計(jì)至少需要多少千克的清水洗1千克蔬菜?(精確到0.1,參考數(shù)據(jù)$\sqrt{5}$≈2.24).
(附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計(jì)分別為$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{a}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

同步練習(xí)冊答案