20.甲、乙、丙、丁四位同學(xué)被問到是否游覽過西岳華山時(shí),回答如下:甲說:我沒去過;乙說:丙游覽過;丙說:丁游覽過;丁說:我沒游覽過.在以上的回答中只有一人回答錯(cuò)誤且只有一人游覽過華山,根據(jù)以上條件,可以判斷游覽過華山的人是( 。
A.B.C.D.

分析 分別假設(shè)甲、乙、丙、丁去過,判斷有3個(gè)正確的即可得到結(jié)論.

解答 解:假設(shè)甲去過,則只有丁正確,
若乙去過,則甲,丁正確,
若丙去過,則甲、乙、丁正確,
若丁去過,則甲、丙正確,
故選:C.

點(diǎn)評(píng) 本題考查合情推理,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,所有棱長都相等的直四棱柱ABCD-A′B′C′D′中B′D′中點(diǎn)為E′.
(1)求證:AE′∥平面BC′D;
(2)求證:BD⊥AE′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若(x+a)(1+2x)5的展開式中x3的系數(shù)為20,則a=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖所示,小圓圈表示網(wǎng)絡(luò)的結(jié)點(diǎn),結(jié)點(diǎn)之間的連線表示它們有網(wǎng)線相連,連線標(biāo)注的數(shù)字表示該段網(wǎng)線單位時(shí)間內(nèi)可以通過的最大信息量.現(xiàn)從結(jié)點(diǎn)B向結(jié)點(diǎn)A傳遞信息,信息可以分開沿不同的路線同時(shí)傳遞,則一次性傳遞的最大信息量為( 。
A.26B.24C.20D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖1所示,在△ABC中,AB⊥AC,AD⊥BC,則AB2=BD•BC.類似有命題:在三棱錐A-BCD中,如圖2所示,AD⊥面ABC.若A在△BCD內(nèi)的射影為O,E在BC上,且E,O,D在同一條直線上,則S△ABC2=S△BCO•S△BCD,此命題是( 。
A.假命題
B.增加AB⊥AC的條件才是真命題
C.真命題
D.增加三棱錐A-BCD是正棱錐的條件才是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知圓O:(x-1)2+(y+2)2=4上有三點(diǎn)A,B,C,點(diǎn)P(1,0)滿足|PA|=|PA1|,|PB|=|PB1|,|PC|=|PC1|,則△A1B1C1的外接圓的方程為(x-1)2+y2=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=2sin(x-$\frac{π}{4}$)的一條對(duì)稱軸是( 。
A.x=$\frac{π}{4}$B.x=$\frac{π}{2}$C.x=$\frac{3π}{4}$D.x=2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知隨機(jī)變量X的分布列為P(X=i)=$\frac{i}{3a}$(i=1,2,3,4,5),則P(1<X<4)等于( 。
A.$\frac{1}{3}$B.$\frac{3}{5}$C.$\frac{5}{3a}$D.$\frac{9}{3a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n•1•2•…•(2n-1)”(n∈N+)時(shí),從“n=k到n=k+1”時(shí),左邊應(yīng)增添的式子是( 。
A.2k+1B.2(2k+1)C.$\frac{2k+1}{k+1}$D.$\frac{2k+2}{k+1}$

查看答案和解析>>

同步練習(xí)冊(cè)答案