分析 (Ⅰ)在所給的等式中,令x=1,可得a0+a1+a2…+a7 的值.
(Ⅱ)先求得(x-2)6的通項公式,可得a5的值.
解答 解:(Ⅰ)∵(2x+1)(x-2)6=a0+a1x+a2x2+…+a7x7 ,令x=1,可得 a0+a1+a2…+a7 =3.
(Ⅱ)∵(x-2)6的通項公式為Tr+1=${C}_{6}^{r}$•(-2)r•x6-r,
故a5 =2•${C}_{6}^{2}$•(-2)2+(-2)•${C}_{6}^{1}$=120+(-12)=108.
點評 本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的x賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -8 | B. | -4 | C. | -3 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({3-\frac{3}{2}ln2,+∞})$ | B. | $[{3-\frac{3}{2}ln2,+∞})$ | C. | [3-3ln2,+∞) | D. | (3-3ln2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
患三高疾病 | 不患三高疾病 | 合計 | |
男 | 24 | 6 | 30 |
女 | 12 | 18 | 30 |
合計 | 36 | 24 | 60 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com